\qquad

1) Find the equation of the tangent line to the curve $y=2 x \cos x$, at the point $(\pi,-2 \pi)$.
(10 Points)
2) A particle starts at the origin and moves along the parabola $y=x^{2}$ such that its distance from the origin increases at 5 units per second. How fast is its x-coordinate changing as it passes through the point $(5,25)$?
(10 points)
3) The angle of elevation of the Sun is decreasing at a rate of $0.25 \mathrm{rad} / \mathrm{hour}$. How fast is the shadow cast by a 400 -foot-tall building increasing when the angle of elevation of the Sun is $\frac{\pi}{6}$
(10 points)
4) A plane flying horizontally at an altitude of 5 km and a speed of $400 \mathrm{~km} / \mathrm{h}$ passed directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 7 km away from the station.
(10 points)
5) If 2000 sq. cm of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
(10 points)
6) Find the points on the ellipse $6 x^{2}+y^{2}=8$ that are farthest away from the point $(2,0)$
7) Given $f^{\prime}(x)=2 \sqrt{x} \bullet(6-5 x)$ and $\mathrm{f}(1)=7$; Find $f(x)$
8) Given $f^{\prime \prime}(x)=5 x^{-2}, x>0, \quad f(2)=3, \quad f(4)=0$ Find $f(x)$
(5 points)
9) If $\int_{0}^{3} f(x) d x=21, \int_{0}^{6} g(x) d x=4$, and $\int_{0}^{3} g(x) d x=7$
a) Find the value of $\int_{3}^{0} f(x) * g(x) d x$
(5 points)
b) Find the value of $\int_{3}^{0}(f(x)-g(x)) d x$
10) Given the function $f(x)=1+x^{2} \quad, \quad-3 \leq x \leq 1$

Estimate the area under the graph of $\mathrm{f}(\mathrm{x})$ using 4
(hint: $n=4$)approximating rectangles and taking the sample points to be:
a) Right endpoints (Draw the appropriate rectangles and find the area)
(5 points)

b) Midpoints (Draw the appropriate rectangles and find the area)
(5 points)

13) Given $\int_{a}^{b} x d x=30$ and $\int_{b}^{a} 5 d x=-30$ Find a and b.
(10 points)
14) Water flows from the bottom of a storage tank at a rate of $r(t)=200-4 t \frac{\text { liters }}{\text { minute }}$, Where $0 \leq t \leq 50$ minutes
a) Find the amount of water that flows from the tank initially (at time $t=0$).
b) Find the amount of water that flows from the tank during the first 25 minutes.
15) Find the area enclosed by the following curves:
$y=2 x+x^{2}$
and
$y=2 x+9$
16) Let $f(x)=\left(\int_{2 x}^{10} \sqrt{t} d t\right)+100$

Find the value of $f^{\prime}(10000)$
17) The velocity of a particle moving along a line is $t^{2}-3 t-4$ meters per second.

Find the acceleration of the particle when the velocity of the particle is zero. (5 points)
18) Find the value of the integral $\int_{C}^{D} \frac{3 x^{2}-5}{x} d x$
(5 points) (Assume $\mathrm{C}>0$ and $\mathrm{D}>0$, and leave your answer in terms of C and D)
19) Determine by differentiation whether the following formula is true or false (Must Show Procedure)

$$
\int \frac{d u}{u^{2}+a^{2}}=\frac{1}{2 a} \ln \left|\frac{2 u+a}{u-a}\right|+C
$$

Bonus Question:

20) Let

$$
f(x)=\frac{1}{2} \int_{2 x}^{5 x} \frac{u+2}{u-1} d u
$$

Find the value of $f^{\prime}(0)$
21) A closed box with square base is to be built to house an ant colony. The bottom and top of the box will be made of material costing $\$ 1$ per square foot, and all four sides are to be constructed of glass costing $\$ 5$ per square foot. What are the dimensions of the box of greatest volume that can be constructed for $\$ 65$?
(Round your answers to two decimal places)

