Name: \qquad Total Possible Points $=150$ (Plus 14 pts Extra Credit ©) $^{\text {) }}$

1) Given $f(x)=\frac{2}{x-1} \quad$ find $\frac{f(x+h)-f(x)}{h}$
(7 Points)
2) Find the Domain and Range of the following functions:
(8 Points)
a) $f(x)=\sqrt{\left(4-x^{2}\right)}$
b) $g(x)=\ln (\ln (x-6))$
3) The graph of g is given.
a) State the value of $g(0)$

b) Why is g one-to-one?
c) Estimate the value of $g^{-1}(2)$?
d) Estimate the domain of $g^{-1}(x)$
e) Sketch the graph of $g^{-1}(x)$

4a) Sketch the graph of the following function: $f(x)=\left\{\begin{array}{cc}2-2 x & x<0 \\ e^{x}+1 & x \geq 0\end{array}\right\}$ (5 Points)

4b) Discuss (with reasons) where the function $\mathrm{f}(\mathrm{x})$ is discontinuous and why. (5 Points)
5) Determine (algebraically) whether f is even, odd, or neither even nor odd
(10 Points)
a) $f(x)=3 x^{5}-4 x^{3}+3$
b) $f(x)=e^{-x^{2}}$
c) $f(x)=x+\sin (x)$
d) $f(x)=x^{4}+2 x^{2}$
6) Solve the following equations algebraically.
(10 points) (Must Show All the Appropriate Steps)
a) $\quad \log x+\log (x+15)=2$
b) $\quad \ln (3+x)-\ln (x-4)=\ln (2)$

8a) Sketch the curve represented by the parametric equation $x=\ln (t) \quad y=\sqrt{t} \quad 1 \leq t \leq 5$ And indicate with an arrow the direction in which the curve is traced as t increases.

8b) Eliminate the parameter to find a Cartesian equation of the curve.

8c) State the domain and range of the above graph.
9) Let f be a one-to-one function whose inverse function is given by the formula: (10 points)

$$
f^{-1}(x)=x^{5}+3 x^{3}+2 x
$$

a) Compute the value of y such that $f^{-1}(y)=6$
b) Compute $f^{-1}(-2)$
c) Compute $f(330)$
d) Compute the value of x such that $f(x)=1$
10) If an arrow is shot upward on the planet X with a velocity of $60 \mathrm{~m} / \mathrm{s}$, its height in meters after t seconds is given by $h(t)=60 t-2 t^{2}$
(10 Points)
a) Find the average velocity over the given time intervals:
i) $[2,2.5]$
j) $[2,2.1]$
k) $[2,2.01]$
l) $[2,2.001]$
b) Find the instantaneous velocity after two seconds.
11) $f(x)=\left\{\begin{array}{ll}x^{3}+2 & x \leq-2 \\ x^{2}+x+1 & -2<x<1 \\ x^{4}+3 & x \geq 1\end{array}\right\}$
(10 Points)

Find the following limits (give reasons, if the limit does not exist)
a) $\lim _{x \rightarrow-2} f(x)$
b) $\lim _{x \rightarrow-1} f(x)$
c) $\lim _{x \rightarrow 1^{+}} f(x)$
d) $\lim _{x \rightarrow 4} f(x)$
12) Find the equation of the exponential function of the form $y=C a^{x}$ that passes through the points $(0,4)$ and $(1,8)$.
(10 Points)
13) For the function whose graph is shown below, answer the following equations:

a) At what number "a" does $\lim _{x \rightarrow a} f(x)$ not exist?
b) At what numbers "a" does $\lim _{x \rightarrow a} f(x)$ exists, yet $f(x)$ is not continuous?
c) At what numbers "a" $f(x)$ is continuous, but is not differentiable?
14) Given $f(x)=\left\{\begin{array}{ll}2 x^{3}+16 & x \leq-1 \\ x^{2}+b x+c & -1<x<1 \\ 3 x^{4}-47 & x \geq 1\end{array}\right\}$ determine the values for b and c so that
$f(x)$ is continuous everywhere.
15) Given the following information about the limits, sketch a graph which could be the graph of $\mathrm{y}=f(x)$. Label all horizontal and vertical asymptote(s). (8 Points)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=3 \\
& \lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\infty \\
& f(0)=-4
\end{aligned}
$$

16) Find the following limits:
a) $\lim _{t \rightarrow 13} \frac{\sqrt{t+3}-4}{t-13}$
b) $\lim _{x \rightarrow-8} \frac{\frac{1}{8}+\frac{1}{x}}{8+x}$
c) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$
d) $\lim _{x \rightarrow \infty} \frac{-x-2 x^{2}+6}{3+4 x+13 x^{2}}$
(Extra Credit 3 Points)
17) Suppose that the line tangent to the graph of $y=f(x)$ at $x=3$ passes through the points $(2,3)$ and $(4,-5)$. Find the following:
a) find $f^{\prime}(3)$
b) find $f(3)$
c) Find an equation of the line tangent to f at $x=3$
(Extra Credit 3 Points)
18) Given the graph of $y=f^{\prime}(x)$, sketch the graph of $y=f(x)$

(Extra Credit 3 Points)

19) Find the following limit

$$
\lim _{x \rightarrow \infty} \frac{\cos x}{x^{4}}
$$

(Hint: Use the Squeeze Theorem)

Given $f(x)=\sqrt{x-3}$
Find the $f^{\prime}(x)$ using either of the two definitions discussed in class.

