Name: \qquad Total Possible Points $=140$ (Plus 10 pts Extra Credits (©)

Show All Your Work,

No Procedure $=$ No Points

(10 Points) 1) Find a formula that describes the following function:

2) Use the intermediate Value Theorem to show that there is a root of the equation $x^{3}+2 x^{2}-42=0$ on the interval $(0,3)$.
(5 Points)
3) Find the following limits Algebraically
(5 Points)
a) $\lim _{x \rightarrow \infty} \frac{1-2 x^{2}}{x^{2}+x}$
b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$
(10 Points)
4) Given the graphs of $y=f^{\prime}(x)$, sketch the graphs of $y=f(x)$

5) Sketch the graph of a function that satisfies all of the following conditions:(10 points)

$$
\begin{aligned}
& f^{\prime}(-1)=f^{\prime}(1)=0 \\
& f^{\prime}(x)<0 \quad \text { if } \quad|x|<1 \\
& f^{\prime}(x)>0 \quad \text { if } \quad|x|>1 \\
& f(-1)=4 \\
& f(1)=0 \\
& f^{\prime \prime}(x)<0 \\
& f^{\prime \prime}(x)>0 \\
& \text { if } x<0 \\
& f^{\prime \prime} x>0
\end{aligned}
$$

6) Find the derivative of the following functions: (4 Points each)
a) $y=4 \pi^{2}+\left(\frac{1}{2} x\right)^{5}$
b) $y=t^{2}-\frac{1}{\sqrt[4]{t^{3}}}$
c) $y=\sin ^{7}\left(x^{2}+2 x+1\right)$
d) $y=\frac{\sec 2 \theta}{1+\tan 2 \theta}$
e) $y=\log _{5}(1+2 x)$
f) $y=\sin ^{-1}\left(x^{2}+2 x+1\right)$
g) $y=17^{\cot \pi \theta}$
8)(2 Points each) a) Find the first derivative of $g(x)=x \sin (x)$.
b) Find the second derivative of $g(x)=x \sin (x)$
c) Evaluate the second derivative of $g(x)$ at $x=\frac{\pi}{6}$. (In other words, find $g^{\prime \prime}\left(\frac{\pi}{6}\right)$
9) Given $h(x)=\sqrt[3]{1+3 x}$
(4 points each)
a) Find a linearization of $h(x)=\sqrt[3]{1+3 x}$ at $\quad a=0$
b) Use your answer to estimate $\sqrt[3]{1.03}$
(8 Points) 10) Find the equation of the tangent line to the curve $\sqrt{x}+\sqrt{y}=9$ at the point $(16,25)$.
(7 points) 11) Find the derivative of the function $y=(x)^{\cos x}$
Compute y^{\prime} in terms of x
(Hint: Use Natural Logarithms)
(8 Points) 12)
Suppose that $h(x)=f(x) g(x)$, and $F(x)=f(g(x))$, where
$f^{\prime}(5)=11$
$w^{\prime \prime}(5)=8$
$f(2)=3$
$g(2)=5$
a) Find $F^{\prime}(2)$
b) Find $h^{\prime}(2)$.
$g^{\prime}(2)=4$
$w^{\prime}(5)=-2$
$f^{\prime}(2)=-2$
(4 Points) 13) Given the following ellipse $x^{2}+2 y^{2}=1$.
a) At what point(s) is the slope of the tangent line equal to 1 ?
b) At what point(s) is the slope of the tangent line equal to 0 ? (4 Points)
14) The mass of part of a wire is $m=x(2+\sqrt{x})$ kilograms, where x is measured in meters from one end of the wire. Find the linear density of the wire when $x=16$ meters. (Hint: linear density $\rho=\frac{d m}{d x}$).
(9 Points) 15) Let $y=e^{\frac{x}{5}}$.
a) Find the differential $d y$.
b) Evaluate $d y$ if $x=0$, and $d x=0.3$
c) Evaluate Δy if $x=0$, and $d x=0.3$ (Hint: $\Delta y=f(x+\Delta x)-f(x))$
(8 Points) 16) Find the equation of the tangent line to the parametric curve $x=t^{2}+3, \quad y=2 t^{3}-t$ at the point corresponding to $t=2$.

EXTRA CREDIT PROBLEMS

(5 Points) 16) Find all values of x so that the graph of $g(x)=\sqrt{3} x+2 \sin (x)$ will have a horizontal tangent?
(5 Points) 17) Show that the following curves are orthogonal (i.e Perpendicular)
$2 x^{2}+y^{2}=3$
$x=y^{2}$

