Professor Katiraie Calculus I Spring 2008 Test III Form A (chapters 1-- 3)
Name (;) 1 Point) \qquad Total Possible Points $=140$ (Plus 10 pts Extra Credit ())

1) Given the following information about the limits, sketch a graph which could be the graph of $\mathrm{y}=f(x)$. Label all horizontal and vertical asymptote(s).

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=-1 \\
& \lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=\infty \\
& \lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=-\infty \\
& f(0)=3
\end{aligned}
$$

2) Given $f(x)=\left\{\begin{array}{ll}2 x^{3}+7 & x \leq-1 \\ x^{2}+b x+c & -1<x<1 \\ x^{4}-10 & x \geq 1\end{array}\right\}$ determine the values for b and c so that $f(x)$ is continuous everywhere.
3) Suppose that the line tangent to the graph of $y=f(x)$ at $x=3$ passes through the points $(2,5)$ and $(4,-5)$. Find the following:
a) Find $f^{\prime}(3)$
b) Find an equation of the line tangent to f at $x=3$
c) Find $f(3)$
4) Find the following limits:
(12 Points)
a) $\lim _{t \rightarrow 3} \frac{\sqrt{t+6}-3}{t-3}$
b) $\lim _{x \rightarrow-7} \frac{7+x}{\frac{1}{7}+\frac{1}{x}}$
c) $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+25}-5}{t^{2}}$
d) $\lim _{t \rightarrow 0} \frac{2}{t^{2}+t}-\frac{2}{t}$
5) Find the derivative of the following functions:
(Do Not Simplify)

a) $y=\sqrt{x}+\frac{1}{\sqrt[5]{x^{7}}}$	b) $y=e^{\tan (2 \theta)}$
c) $y=\cos ^{5}(4 x)$	d) $y=\sin \left((5 x)^{3}\right)$
e) $y=\sqrt{x+\sqrt{x}}$	f) $y=\left(\frac{3 x-7}{x^{2}-1}\right)^{7}$
i) $y=\sin -1\left(x^{2}+2 x+1\right)$	j) $y=\ln \left(x^{2}+2 x+1\right)$
$y=10^{\sec \pi \theta}$	

6) Find the equation of the tangent line to the curve $\sqrt{x}+\sqrt{y}=7$, at the point $(9,16)$.
(10 Points)
7) Find the derivative of the function $y^{x}=(x)^{\cos x}$ Compute y^{\prime} in terms of x, and y.
(10 points)
(Hint: Use Natural Logarithms)

$$
\begin{aligned}
& f(5)=4 \\
& g(5)=2
\end{aligned}
$$

8) Suppose that $h(x)=g(x) f(x)$, and $F(x)=g(f(x))$, where $g^{\prime}(5)=-1$,

$$
\begin{aligned}
& f^{\prime}(5)=-2, \\
& g^{\prime}(4)=-5
\end{aligned}
$$

a) Find $h^{\prime}(5)$
(5 Points)
b) Find $F^{\prime}(5)$.
9) Find all values of x so that the graph of $f(x)=x-2 \sin x$ will have a horizontal tangent?
10) Find the equation of the tangent line to the curve $y=x \cos x$, at the point $(\pi,-\pi)$.
11) A particle moves on a vertical line so that its coordinate at time t is

$$
s(t)=t^{3}-12 t^{2}+3 \quad t \geq 0
$$

where $S(t)$ is measured in meters and t is measured in seconds.
a) When is the particle moving upward?
b) Find the distance that the particle travels in the time interval $7 \leq t \leq 9$ seconds.
c) When is the particle speeding up?
12) Consider the circle $x^{4}+y^{4}=1$.

At what point(s) is the slope of the tangent line equal to 1 ?
13) Let $y=e^{\frac{x}{5}}$.
a) Find the differential $d y$.
(3 Points)
b) Evaluate $d y$ if $x=0$, and $d x=0.3$

Extra Credits

14) Given that $\quad v(x)=\frac{f(x)}{g(x)}$, and $w(x)=f(x) g(x)$
(5 Points)
And graphs of $f(x)$
and $\mathrm{g}(\mathrm{x})$

Find the following:

$v^{\prime}(0)$	$w^{\prime}(1)$

15a) Find the linearization of $f(x)=\sqrt[3]{1+x}$ at $\quad \mathrm{a}=0$.
(3 points)

15b) Use the above to give an approximate value for $\sqrt[3]{0.95}$.

