

1) Given the following information about the limits, sketch a graph which could be the graph of y = f(x). Label all horizontal and vertical asymptote(s). (10 Points)

 $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = -1$ $\lim_{x \to -3^{+}} f(x) = \lim_{x \to 2^{-}} f(x) = \infty$ $\lim_{x \to -3^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = -\infty$ f(0) = 32) Given $f(x) = \begin{cases} 2x^3 + 7 & x \le -1 \\ x^2 + bx + c & -1 < x < 1 \\ x^4 - 10 & x \ge 1 \end{cases}$ determine the values for b and c so that f(x)is continuous everywhere. (8 Points) 3) Suppose that the line tangent to the graph of y = f(x) at x = 3 passes through the points (2, 5) and (4, -5). Find the following: (9 Points)

a) Find f'(3)

b) Find an equation of the line tangent to f at x = 3

c) Find f(3)

4) Find the following limits:
a)
$$\lim_{t \to 3} \frac{\sqrt{t+6}-3}{t-3}$$

b) $\lim_{x \to -7} \frac{7+x}{\frac{1}{7}+\frac{1}{x}}$

c)
$$\lim_{t\to 0} \frac{\sqrt{t^2 + 25} - 5}{t^2}$$

d)
$$\lim_{t \to 0} \frac{2}{t^2 + t} - \frac{2}{t}$$

(12 Points)

5) Find the derivative of the following functions:	(4 Points each)
(Do Not Simplify)	

_ 1	$\tan(2\theta)$
a) $y = \sqrt{x} + \frac{1}{\sqrt[5]{x^7}}$	b) $y = e^{\tan(2\theta)}$
N A	
	$\lim_{n \to \infty} \sin((5n)^3)$
c) $y = \cos^5(4x)$	d) $y = \sin((5x)^3)$
e) $y = \sqrt{x + \sqrt{x}}$	f) $y = \left(\frac{3x-7}{x^2-1}\right)^7$
	(x^2-1)
g) $y = 10^{\sec \pi \theta}$	h) $y = \sin(\cot\sqrt{1+x^2})$
5/ , 10	$y = \sin(\cot \sqrt{1+x})$
i) $y = \sin^{-1}(x^2 + 2x + 1)$	j) $y = \ln(x^2 + 2x + 1)$

7) Find the derivative of the function $y^x = (x)^{\cos x}$ (10 points) Compute y' in terms of x, and y. (Hint: Use Natural Logarithms)

$$f(5) = 4,$$

$$g(5) = 2,$$

8) Suppose that $h(x) = g(x)f(x)$, and $F(x) = g(f(x))$, where $g'(5) = -1,$

$$f'(5) = -2,$$

$$g'(4) = -5$$

a) Find h'(5)

(5 Points)

b) Find F'(5).

(5 Points)

9) Find all values of x so that the graph of $f(x) = x - 2\sin x$ will have a horizontal tangent?

(5 Points)

10) Find the equation of the tangent line to the curve $y = x\cos x$, at the point $(\pi, -\pi)$. (5 Points)

- 11) A particle moves on a vertical line so that its coordinate at time t is $s(t) = t^3 - 12t^2 + 3$ $t \ge 0$ where S(t) is measured in meters and t is measured in seconds. (10 Points)
- a) When is the particle moving upward?
- b) Find the distance that the particle travels in the time interval $7 \le t \le 9$ seconds.
- c) When is the particle speeding up?

12) Consider the circle $x^4 + y^4 = 1$. (5 Points)

At what point(s) is the slope of the tangent line equal to 1?

13) Let
$$y = e^{\frac{x}{5}}$$
.

a) Find the differential dy.

(3 Points)

b) Evaluate dy if x = 0, and dx = 0.3

(2 Points)

Extra Credits

15a) Find the linearization of $f(x) = \sqrt[3]{1+x}$ at a = 0. (3 points)

