Professor Katiraie	Calculus I	Spring 2008	Test III Form B (chapters 1 3)
Name (© 1 Point)			Total Possible Points = 140 (Plus 10 pts Extra Credits ©)

1) Given the following information about the limits, sketch a graph which could be the graph of y = f(x). Label all horizontal and vertical asymptote(s). (10 Points)

 $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 3$ $\lim_{x \to -2^+} f(x) = \lim_{x \to 1^+} f(x) = -\infty$ $\lim_{x \to -2^-} f(x) = \lim_{x \to 1^+} f(x) = \infty$ f(0) = -2

Find the f'(x) using either of the two definitions discussed in class (Must Use the Definition Of Derivative for Full Credits)

a)	$y = \sqrt[4]{x-2} - 5$	b)	$f(x) = \frac{1}{4} \ln(7x)$

4) Given
$$f(x) = \begin{cases} 2x^3 + 7 & x \le -1 \\ x^2 + bx + c & -1 < x < 1 \text{ determine the values for b and c so that} \\ x^4 - 10 & x \ge 1 \end{cases}$$

f(x) is continuous everywhere

(10 points)

(10 points)

(4 Points each) (Do Not Simplify)

a)	$y = \sqrt[3]{x^7} + \frac{1}{\sqrt{x}}$	b)	$y = e^{\sec(2\theta)}$
c)	$y = \sin^5(4x)$	d)	$y = \tan((5x)^3)$
e)	$y = \sqrt{2x + \sqrt{3x}}$	f)	$y = \left(\frac{-3x - 7}{2x^2 - 1}\right)^7$
g)	$y = 10^{\left[\sin(3\theta) + \cos(2\theta)\right]}$	h)	$y = \sin(\sec(\sqrt{1+x^2}))$
i)	$y = \sin^{-1}(x^2 + 2x + 1)$	j)	$y = \ln(\frac{x^2}{2} + 2x + 1)$

6) Find the equation of the tangent line to the curve $2\sqrt{x} + 4\sqrt{y} = 14$ at the point (9, 4). (10 Points)

7) Find the derivative of the function $y^{2x} = (3x)^{\cos x}$ (10 points) Compute y' in terms of x, and y. (Hint: Use Natural Logarithms)

$$f(-3) = 4,$$

$$g(-3) = 2,$$

8) Suppose that $h(x) = g(x)f(x)$, and $F(x) = g(f(x))$, where $g'(-3) = -1,$

$$f'(-3) = -3,$$

$$g'(4) = -5$$

a) Find h'(5)

(5 Points)

b) Find F'(5).

(5 Points)

9) Find all values of x so that the graph of $f(x) = \sqrt{3}x + 2\sin x$ will have a horizontal tangent?

(5 Points)

10) Find the equation of the tangent line to the curve $y = x\cos x + x$, at the point $(\pi, 0)$. (5 Points)

- 11) A particle moves on a vertical line so that its coordinate at time t is $s(t) = t^3 - 12t^2 + 3$ $t \ge 0$ where S(t) is measured in meters and t is measured in seconds. (10 Points)
- a) When is the particle moving backward?
- b) Find the distance that the particle travels in the time interval $5 \le t \le 10$ seconds.
- c) When is the particle slowing down?

12) Given
$$f(x) = -2e^x g(x) - 7x$$

And $g(0) = 4$ and $f'(0) = -6$, find $g'(0)$.

(3 Points)

Prove that
$$\frac{d}{dx}(10\sec x) = 10\sec x \tan x$$

(2 Points)

13)	Find the linearization of $f(x) = \sqrt[3]{1+3x}$ at $a = 0$.	(3 Points)
-)		

a) State the corresponding linear approximation.

b) Use the above to give an approximate value for $\sqrt[3]{1.03}$ (2 Points)

Extra Credits

Find the following:

15) Given
$$x^3 + y^3 = 6xy^2$$
 Find y' in terms of x , and y .

(5 Points)