\qquad Total Possible Points $=140$
(Plus 10 pts Extra Credit ${ }^{-}$)

1) Find a formula that describes the following function:
(8 Points)

2) The graph of $y=f(x)$ is given below; Sketch a graph of $y=-\frac{1}{2} f(x-2)$
(8 points)

3) Given the function: $f(x)=\frac{2}{x-1}$
(8 pts)
Find the following $\frac{f(x+h)-f(x)}{h}$
4) Find the inverse of the following functions. (Must Show All the Appropriate Steps)

| a) $y=\sqrt[3]{x-2}-5$ | b) $\quad f(x)=\frac{1}{4} \log (7 x)$ |
| :--- | :--- | :--- |

5) Solve the following algebraically:
a) $\left(\frac{1}{5}\right)^{2-x}=25$
b) $e^{x^{2}} \cdot \frac{1}{e^{6}}=\left(e^{5 x}\right)$
c) If $3^{x}=\frac{1}{49}$, what does $3^{-2 x}$ equal?

6a) Sketch the graph of the following function:

$$
f(x)=\left\{\begin{array}{lc}
2 x & x \leq-2 \\
2-2 x & -2<x<0 \\
e^{x}+2 & x \geq 0
\end{array}\right.
$$

(5 Points)

6b) Discuss (with reasons) where the function $\mathrm{f}(\mathrm{x})$ is discontinuous and why. (5 Points)
7) If an arrow is shot upward on the planet X with a velocity of $70 \mathrm{~m} / \mathrm{s}$, its height in meters after t seconds is given by $\quad h(t)=70 t-2 t^{2}$
a) Find the average velocity over the given time intervals:
i) $[2,2.5]$
j) $[2,2.1]$
k) $[2,2.01]$
l) $[2,2.001]$
b) Find the instantaneous velocity after two seconds.
8) $f(x)=\left\{\begin{array}{ll}x^{3}+2 & x \leq-2 \\ x^{2}+x+1 & -2<x<1 \\ x^{4}+3 & x \geq 1\end{array}\right\}$

Find the following limits (give reasons, if the limit does not exist)
a) $\lim _{x \rightarrow-2} f(x)$
b) $\lim _{x \rightarrow-1} f(x)$
c) $\lim _{x \rightarrow 1^{+}} f(x)$
d) $\lim _{x \rightarrow 4} f(x)$
9) For the function whose graph is shown below, answer the following equations:

a) At what number "a" does $\lim _{x \rightarrow a} f(x)$ not exist?
b) At what numbers " a " does $\lim _{x \rightarrow a} f(x)$ exists, yet $f(x)$ is not continuous?
c) At what numbers "a" $f(x)$ is continuous, but is not differentiable?
10) Given $f(x)=\left\{\begin{array}{ll}2 x^{3}+16 & x \leq-1 \\ x^{2}+b x+c & -1<x<1 \\ 3 x^{4}-47 & x \geq 1\end{array}\right\}$ determine the values for b and c so that $f(x)$ is continuous everywhere.
11) Given the following information about the limits, sketch a graph which could be the graph of $\mathrm{y}=f(x)$. Label all horizontal and vertical asymptote(s). (9 Points)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=3 \\
& \lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\infty \\
& f(0)=-2
\end{aligned}
$$

12) Find the following limits:
a) $\lim _{t \rightarrow 13} \frac{\sqrt{t+3}-4}{t-13}$
b) $\lim _{x \rightarrow-8} \frac{8+x}{\frac{1}{8}+\frac{1}{x}}$
c) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$
d) $\lim _{t \rightarrow 0} \frac{1}{t}-\frac{1}{t^{2}+t}$
13) Suppose that the line tangent to the graph of $y=f(x)$ at $x=3$ passes through the points $(2,3)$ and $(4,-5)$. Find the following:
a) Find $f^{\prime}(3)$
b) Find $f(3)$
c) Find an equation of the line tangent to f at $x=3$
14) Given the graph of $y=f^{\prime}(x)$, sketch the graph of $y=f(x)$
(12 Points)

15) Find the following limit $\lim _{x \rightarrow \infty} \frac{\cos x}{x^{4}}$
(6 Points)
(Hint: Use the Squeeze Theorem)
16) Given $f(x)=\frac{1}{\sqrt{x-3}}$

Find the $f^{\prime}(x)$ using either of the two definitions discussed in class.
17) Given $f(x)=\sqrt{1+2 x}$
(Extra Credits 5 Points)
Find the $f^{\prime}(x)$ using either of the two definitions discussed in class

