Name: \qquad Total Possible Points $=140$
(Plus 10 pts Extra Credit ${ }^{()}$)

1) (8 pts) Given the function: $f(x)=\frac{1}{x-2}$ Find the following $\frac{f(x+h)-f(x)}{h}$ ($\mathrm{X} \lambda \varepsilon \alpha \rho \lambda \psi \sigma \tau \alpha \tau \varepsilon \varepsilon \alpha \chi \eta \sigma \tau \varepsilon \pi$ оф $\tau \eta \varepsilon \pi \rho \circ \chi \varepsilon \sigma \sigma$).
2) The graph of $y=f(x)$ is given below; Sketch a graph of $y=-\frac{1}{3} f(x-2)$
(8 points)

3) Find a formula that describes the following function: (8 Points)

4) Solve the following algebraically:
a) $\left(\frac{1}{3}\right)^{2-x}=27$
b) $e^{x^{2}} \cdot \frac{1}{e^{-6}}=\left(e^{-5 x}\right)$
c) If $3^{x}=\frac{1}{10}$, what does $3^{-4 x}$ equal?
5. Find the inverse of the following functions.
(10 points) (Must Show All the Appropriate Steps)

a) $y=\sqrt[4]{x+7}-6$	b) $\quad f(x)=-\frac{1}{6} \ln (7 x)$

6) If an arrow is shot upward on the planet X with a velocity of $60 \mathrm{~m} / \mathrm{s}$, its height in meters after t seconds is given by $\quad h(t)=60 t-2 t^{2}$
(10 Points)
a) Find the average velocity over the given time intervals:
i) $[2,2.5]$
j) $[2,2.1]$
k) $[2,2.01]$
7) $[2,2.001]$
b) Find the instantaneous velocity after two seconds.

7a) Sketch the graph of the following function:
$f(x)=\left\{\begin{array}{lr}x & x \leq-1 \\ -x-3 & -1<x<0 \\ e^{x}+2 & x \geq 0\end{array}\right.$
(5 Points)

7b) Discuss (with reasons) where the function $\mathrm{f}(\mathrm{x})$ is discontinuous and why. (5 Points)
8) For the function whose graph is shown below, answer the following equations:

a) At what number "a" $\lim _{x \rightarrow a} f(x)$ does not exist?
b) At what numbers "a" $\lim _{x \rightarrow a} f(x)$ exists, yet $f(x)$ is not continuous?
c) At what numbers "a" $f(x)$ is continuous, but is not differentiable?
9) $f(x)=\left\{\begin{array}{ll}x^{3}+2 & x \leq-2 \\ x^{2}+x+1 & -2<x<1 \\ x^{4}+3 & x \geq 1\end{array}\right\}$

Find the following limits (give reasons, if the limit does not exist)
a) $\lim _{x \rightarrow 1} f(x)$
b) $\lim _{x \rightarrow-1} f(x)$
c) $\lim _{x \rightarrow-2^{+}} f(x)$
d) $\lim _{x \rightarrow-3} f(x)$
10) Given the following information about the limits, sketch a graph which could be the graph of $\mathrm{y}=f(x)$. Label all horizontal and vertical asymptote(s). (9 Points)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=-1 \\
& \lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=\infty \\
& \lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=-\infty \\
& f(0)=3
\end{aligned}
$$

11) Given $f(x)=\left\{\begin{array}{ll}2 x^{3}+7 & x \leq-1 \\ x^{2}+b x+c & -1<x<1 \\ x^{4}-10 & x \geq 1\end{array}\right\}$ determine the values for b and c so that $f(x)$ is continuous everywhere.
12) Suppose that the line tangent to the graph of $y=f(x)$ at $x=3$ passes through the points $(2,5)$ and $(4,-5)$. Find the following:
a) Find $f^{\prime}(3)$
b) Find $f(3)$
c) Find an equation of the line tangent to f at $x=3$
13) Find the following limits:
a) $\lim _{t \rightarrow 3} \frac{\sqrt{t+6}-3}{t-3}$
b) $\lim _{x \rightarrow-7} \frac{7+x}{\frac{1}{7}+\frac{1}{x}}$
c) $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+25}-5}{t^{2}}$
d) $\lim _{t \rightarrow 0} \frac{2}{t^{2}+t}-\frac{2}{t}$
14) Find the following limit $\lim _{t \rightarrow 0} x^{4} \cos \left(\frac{1}{x^{2}}\right)$
(Hint: Use the Squeeze Theorem)
15) Given the graph of $y=f^{\prime}(x)$, sketch the graph of $y=f(x)$

16) Given $f(x)=\sqrt{1+3 x}$
(Extra Credits 5 Points)
Find the $f^{\prime}(x)$ using either of the two definitions discussed in class
17) Given $f(x)=\frac{1}{\sqrt{x+1}}$
(Extra Credits 5 Points)
Find the $f^{\prime}(x)$ using either of the two definitions discussed in class.

