Name:

Calculus I Dr. Katiraie
Sections 5.2 and 5.3

1) Find the general indefinite integrals.
a) $\int \frac{\sin x}{1-\sin ^{2} x} d x$
hint: $\sin ^{2} x+\cos ^{2} x=1$
b) $\int\left(-5 e^{7 x}+\frac{8}{x}\right) d x$
c) $\int\left(\left(1-\frac{1}{\sqrt{x}}\right)\left(1+\frac{1}{\sqrt{x}}\right)\right) d x$
d) $\int \frac{t^{3}+2 t^{2}}{\sqrt{t}} d t$
e) $\int \pi^{3} d x$
f) $\int \pi^{3} x d x$
g) $\int(\sin (t)+\cos (t)-\csc t \cot t) d t$
h) $\int\left(\sec ^{2} t+t^{2}+2\right) d t$
i) $\int \frac{\sin 2 x}{\sin x} d x$
2) Given the velocity function (in meters per second) for a particle along a line is $v(t)=t^{2}-2 t-8, \quad 1 \leq \mathrm{t} \leq 6$
a) Graph the velocity function,
b) Find the displacement of the particle during the time interval $1 \leq \mathrm{t} \leq 6 \quad$ seconds
c) Find the distance traveled by the particle during the time interval $1 \leq \mathrm{t} \leq 6 \quad$ seconds
3) Let
$g(x)=\int_{0}^{x} f(t) d t \quad$ where, x is in the closed interval 0 to 7, namely $0 \leq x \leq 7$,and $f(t)$ is the function whose graph is shown below.
(Note: $g^{\prime}(x)=f(x)$ for $0<x<7$

a) Evaluate $g(0)$
b) Evaluate $\mathrm{g}(1)$
c) Evaluate $\mathrm{g}(2)$
d) Evaluate $\mathrm{g}(3)$
e) Evaluate $\mathrm{g}(5)$
f) Evaluate $\mathrm{g}(6)$
g) Evaluate g(7)
b) On what interval is $\mathrm{g}(\mathrm{x})$ increasing?
c) On what interval is $\mathrm{g}(\mathrm{x})$ decreasing?
c) For what value does $g(x)$ have a maximum value?
d) On what interval is $g(x)$ concave upward?
e) On what interval is $g(x)$ concave downward?
