Group Work 3, Section 1.6 Irrational, Impossible Relations

1. If $\log_2 x = s$, then what is $\log_{1/2} x$? $2 \stackrel{\text{N}}{=} \chi$ $\frac{\log \chi}{2} = \chi$ $\frac{\log \chi}{\log 2} = \stackrel{\text{N}}{=} \frac{\log \chi}{\log 2} = \frac{\log \chi}{\log 2} = \frac{\log \chi}{\log 2} = \frac{\log \chi}{\log 2}$ $\frac{\log \chi}{\log 2} = \stackrel{\text{N}}{=} \frac{\log \chi}{\log 2} = \frac{\log \chi}{\log 2} = \frac{\log \chi}{\log 2}$

2. If $\log_b x = s$, then what is $\log_{1/b} x$ (assuming b > 1)?

$$\frac{\log X = S \implies \frac{\log X}{\log b} = S \implies \log X = S \log t$$

$$\frac{\log X = \frac{\log X}{\log b} = \frac{S \log b}{\log \frac{1}{b}} = \frac{1}{\log b}$$

3. If $\log_b x = s$, then what is $\log_{b^2} x$?

 $\begin{array}{rcl} \log X = S \implies & \frac{\log X}{\log b} = S \implies & \log X = S \log b \\ \log_{b^{2}} X = & \frac{\log X}{\log b^{2}} = & \frac{S \log b}{\log b^{2}} = -\frac{1}{2}S \end{array}$

We are going to estimate $\log_2 3$. In pre-calculus, you memorized that $\log_2 3 \approx 1.584962501$. Suppose you didn't have this fact memorized. There is no \log_2 button on your calculator! How would you compute it?

$$\log_2 3 = \frac{\log_3 3}{\log_2 2} \frac{\ln_3 3}{\ln_2 2}$$

Unfortunately, the calculator gives us only a finite number of digits. If $\log_2 3$ were a rational number, we would be able to express it as a fraction, giving us perfect accuracy. Do you think it is rational or irrational? Try to prove your result.

Wrational Number

Group Work 3, Section 1.6 Irrational, Impossible Relations (Hint Sheet)

So, you realize that it's not easy to determine whether $\log_2 3$ is rational!

One way to attempt to show that $\log_2 3$ is rational is to assume that it is, and try to find integers a and b such that $\log_2 3 = \frac{a}{b}$. If we can show that there are no such a and b, then $\log_2 3$ cannot be rational. 1. Assume that $\log_2 3 = \frac{a}{b}$ for integers $a, b \ge 0$. Show that a and b must then satisfy $2^a = 3^b$.

Assume
$$b_2^3 = \frac{a}{b} = 2^{\frac{a}{5}} = 3 = 2^{\frac{a}{5}} = 3$$

= intersection at $a = b = 0$
Hence No such a $\frac{1}{b} = existing = 3^{\frac{a}{5}}$. Why doesn't this fact help us? Then $\log_2 3$ is in a tornal
be accurate $\log_2 3 \neq \frac{0}{0}$

3. Find $a \neq 0$ and $b \neq 0$ that satisfy $2^a = 3^b$, or show that no such a and b exist.

No such a or b exists

4. Is log₂ 3 rational or rrational? Why?