1. If $\log _{2} x=s$, then what is $\log _{1 / 2} x$?

$$
\begin{aligned}
& 2^{s}=x \\
& \frac{\log x}{\log 2}=s \Rightarrow \log x=s \log 2
\end{aligned}
$$

2. If $\log _{b} x=s$, then what is $\log _{1 / b} x$ (assuming $b>1$)?

$$
\log _{\frac{1}{2}} x=\frac{\log x}{\log 1 / 2}=\frac{S \log 2}{\log 1 / 2}
$$

$$
\begin{aligned}
& \log _{b} X=S \Rightarrow \frac{\log X}{\log b}=S \Rightarrow \log X=S \log b \\
& \quad \log _{\frac{1}{b}} X=\frac{\log X}{\log 1 / b}=\frac{S \log b}{\log \frac{1}{b}}=-S \\
& \text { 3. If } \log _{b} x=s \text {, then what is } \log _{b^{2} x} x
\end{aligned}
$$

$$
\begin{aligned}
& \log _{2}=\$ \Rightarrow \frac{\log x}{\log b}=\$ \Rightarrow \log x=\$ \log b \\
& \log _{2} x=\frac{\log x}{\log ^{2}}=\frac{\$ \log b}{\log ^{2}}=\frac{1}{2} \$
\end{aligned}
$$

We are going to estimate $\log _{2} 3$. In pre-calculus, you memorized that $\log _{2} 3 \approx 1.584962501$. Suppose you didn't have this fact memorized. There is no $\log _{2}$ button on your calculator! How would you compute it?

$$
\log _{2} 3=\frac{\log 3}{\log 2} \underset{C R}{\ln 3} \frac{\ln 2}{\ln }
$$

Unfortunately, the calculator gives us only a finite number of digits. If $\log _{2} 3$ were a rational number, we would be able to express it as a fraction, giving us perfect accuracy. Do you think it is rational or irrational? Try to prove your result.

$$
\log _{2} 3=1.584962501
$$

Group Work 3, Section 1.6
Irrational, Impossible Relations (Hint Sheet)
So, you realize that it's not easy to determine whether $\log _{2} 3$ is rational!
One way to attempt to show that $\log _{2} 3$ is rational is to assume that it is, and try to find integers a and b such that $\log _{2} 3=\frac{a}{b}$. If we can show that there are no such a and b, then $\log _{2} 3$ cannot be rational.

1. Assume that $\log _{2} 3=\frac{a}{b}$ for integers $a, b \geq 0$. Show that a and b must then satisfy $2^{a}=3^{b}$.

Assume $\log _{2} 3=\frac{a}{b} \Rightarrow 2^{\frac{a}{b}}=3 \Rightarrow 2^{a}=3^{b}$

