$n^{\text {th }}$-TERM TEST

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ may converge or it may diverge.

GEOMETRIC SERIES

The series $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots$ converges if $|r|<1$ and diverges if $|r| \geq 1$.

p-SERIES

The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $\mathrm{p}>1$ and diverges if $p \leq 1$.

INTEGRAL TEST

If f is continuous, positive, and decreasing on $[1, \infty]$ and if $a_{n}=f(n)$, then
$\sum_{n=1}^{\infty} a_{n}$ converges if $\int_{1}^{\infty} f(x) d x$ converges, and
$\sum_{n=1}^{\infty} a_{n}$ diverges if $\int_{1}^{\infty} f(x) d x$ diverges.

COMPARISON TESTS

Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are two series of positive terms and the convergence of $\sum_{n=1}^{\infty} b_{n}$ is known.

Basic Comparison Test

(1) If there exists a number N such that $a_{n}<b_{n}$ for $\mathrm{n}>\mathrm{N}$, and $\sum_{n=1}^{\infty} b_{n}$ converges, then

$$
\sum_{n=1}^{\infty} a_{n} \text { converges. }
$$

(2) If there exists a number N such that $a_{n}>b_{n}$ for $\mathrm{n}>\mathrm{N}$, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Limit Comparison Test

If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, where L is a non-zero finite number, then $\sum_{n=1}^{\infty} a_{n}$ converges if $\sum_{n=1}^{\infty} b_{n}$ converges, and $\sum_{n=1}^{\infty} a_{n}$ diverges if $\sum_{n=1}^{\infty} b_{n}$ diverges.

RATIO TEST

(1) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and therefore convergent.
(2) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or if, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, the series $\sum_{n=1}^{\infty} a_{n}$ is divergent
(3) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, this test has no conclusion and another test must be used.

ALTERNATING SERIES TEST

If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ or $\sum_{n=1}^{\infty}(-1)^{n} b_{n} \quad$ satisfies
(1) $\lim _{n \rightarrow \infty} b_{n}=0$ and (2) $b_{n+1} \leq b_{n}$ for all n beyond some finite number N , then the series is convergent.

ALTERNATING SERIES ESTIMATION THEOREM

If S is the sum of an alternating series that satisfies conditions (1) and (2) in the Alternating Series Test, then the size of the error in using the first n terms to estimate S is less than the first terms to be omitted, that is, $\left|R_{n}\right|=\left|S-S_{n}\right| \leq b_{n+1}$

NOTES:

(1) The convergence or divergence of a series is not affected if each term is multiplied by a nonzero finite constant.
(2) The sum of two convergent series converges. The sum of a convergent and a divergent series diverges.
(3) In general, a series "behaves like" the series which is found by considering the dominant term in the numerator and the dominant term in the denominator.

