Dr. Katiraie
(100 points)
Name (1 Point)
Show all of your work on the test paper. Full credit is not given unless the answer follows from the work shown.

$$
\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \quad \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \quad \sin 2 \theta=2 \sin \theta \cos \theta
$$

1. Evaluate the following indefinite integrals.
(a) $\int x^{2} \cos x d x=x^{2} \sin x-\int 2 x \sin x d x$

$$
\begin{array}{ll}
u=x^{2} & d v=\cos x d x \\
d u=2 x d x & v=\sin x \\
u=2 x & d v=-\sin x d x \\
d u=2 d x & v=\cos x
\end{array}
$$

$$
\begin{aligned}
& =x^{2} \sin x+2 x \cos x-2 \int \cos x d x \\
& =x^{2} \sin x+2 x \cos x-2 \sin x+c
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \sin ^{2}(7 x) d x & =\int \frac{1}{2}(1-\cos (14 x)) d x \\
& =\frac{1}{2} x-\frac{1}{28} \sin (14 x)+c
\end{aligned}
$$

(c) $\int \frac{x+6}{x^{2}+25} d x=\int \frac{x}{x^{2}+25} d x+\int \frac{6}{x^{2}+25} d x$

$$
\begin{aligned}
& u=x^{2}+25 \\
& d u=2 x d x \\
&=\frac{1}{2} \ln \left|x^{2}+25\right|+\frac{6}{5} \tan ^{-1}\left(\frac{x}{5}\right)+c
\end{aligned}
$$

(\#1 Continued) Evaluate the following indefinite integrals.
(d) $\int \frac{3 e^{\sqrt{x}}}{\sqrt{x}} d x$

$$
\begin{gathered}
u=\sqrt{x} \\
d u=\frac{1}{2} x^{-1 / 2} d x \\
=(2) \cdot 3 \int \frac{e^{\sqrt{x}}}{2 \sqrt{x}} d x \\
=6 \int e^{u} d u \\
=6 e^{u}+c=6 e^{\sqrt{x}}+c
\end{gathered}
$$

$$
\text { (e) } \begin{array}{r}
\int \frac{x+10}{x^{2}+5 x-6} d x \Rightarrow \\
\quad \frac{x+10}{(x+6)(x-1)}=\frac{A}{x+6}+\frac{B}{x-1} \\
\\
\quad A=\frac{-6+10}{-6-1}=\frac{4}{-7}=\frac{-4}{7}
\end{array}
$$

$$
\left.B\right|_{x=+1}=\frac{1+10}{1+6}=11 / 7
$$

$$
\int \frac{x+10}{x^{2}+5 x-6} d x=\int \frac{-4 / 7}{x+6} d x+\int \frac{11 / 7}{x-1} d x
$$

$$
=\frac{-4}{7} \ln |x+6|+11 / 7 \ln (x-1 \mid+c
$$

$$
\stackrel{o r}{=} \ln \left|\frac{(x-1)^{16 / 7}}{(x+6)^{4 / 7}}\right|+c
$$

2. Given the integral $\int_{1}^{4} \frac{1}{\sqrt{1+x^{3}}} d x$,
(a) Use the program NUMINT to approximate the value of this integral by using the Trapezoidal Rule with $n=50$. Write down your answer with at least 6 decimal places.

$$
0.896014
$$

(b) If E_{T} is the error which occurs when the Trapezoidal Rule is used with n subintervals to evaluate the integral $\int_{a}^{b} f(x) d x$, then $\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$, where $\left|f^{\prime \prime}(x)\right| \leq K$ for $a \leq x \leq b$.
i) Please Show Your Work and Find $f^{\prime \prime}(x)$

$$
\begin{aligned}
& f(x)=\left(1+x^{3}\right)^{-1 / 2} \\
& f^{\prime}(x)=\frac{-1}{2}\left(1+x^{3}\right)^{-3 / 2}\left(3 x^{2}\right)=\frac{-3}{2} x^{2}\left(1+x^{3}\right)^{-3 / 2} \\
& f^{\prime \prime}(x)=-3 x\left(1+x^{3}\right)^{-3 / 2}-\frac{3}{2} x^{2}\left(-\frac{3}{2}\right)\left(1+x^{3}\right)^{-\frac{5}{2}} \cdot 3 x^{2} \\
& f^{\prime \prime}(x)=-3 x\left(1+x^{3}\right)^{-\frac{3}{2}}+\frac{27}{4} x^{4}\left(1+x^{3}\right)^{-5 / 2}
\end{aligned}
$$

ii) Using your calculator, find K so that $\left|f^{\prime \prime}(x)\right| \leq K$

$$
\left|f^{\prime \prime}(x)\right| \leqslant 0.37721646
$$

iii) How large should we take n in order to guarantee that the Trapezoidal Rule approximation for $\int_{1}^{4} \frac{1}{\sqrt{1+x^{3}}} d x$ is accurate to within 0.00001 ?

$$
\begin{aligned}
& \frac{0.37721646(4-1)^{3}}{12 n^{2}}<0.00001 \\
& 291.33<n \\
& n \geq 292
\end{aligned}
$$

3. You will need to use Simpson's Rule in this problem.

Simpson's Rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{o)}+4 f\left(x_{1}\right)+2 f\left(x_{2)}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right],\right.
$$

where n is even and $\Delta x=(b-a) / n$

The speed of an object was observed at two-second intervals and recorded in the chart below. Use Simpson's Rule to estimate the distance traveled by the object.

$\mathrm{t}(\mathrm{sec})$	0	2	4	6	8	10	12
$\mathrm{v}(\mathrm{ft} / \mathrm{sec})$	20	25	28	26	30	32	34

$$
\text { distance }=\frac{2}{3}[20+4(25)+2(28)+4(26)+2(30)+4(32)+34]
$$

$=334.67$ feet or $\frac{1004}{3}$ feet
4. Use Calculus to evaluate the limit.

Show all of your work on the test paper. Full credit is not given unless the answer follows from the work shown.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{1}(1-x)^{1 / x}}^{1 / x}=1 \\
& \text { Set } y=(1-x)^{1 / x} \\
& \ln y=\frac{\ln }{x} \ln (1-x) \\
& \lim _{x \rightarrow 0^{+}} \ln y=\frac{\ln (1-x)}{x}=\frac{0}{0} \quad \text { Indeterminate }
\end{aligned}
$$

5. Set up, but do not integrate or evaluate, an integral which represents the area of the region between the graphs of $x=y+1$ and $x=y^{2}-1$. The region is shown below.

$$
\begin{aligned}
& y^{2}-1=y+1 \\
& y^{2}-y-2=0 \\
& (y-2)(y+1)=0 \\
& y=2 \quad y=-1 \\
& \int_{y=-1}^{y=2}\left(y+1-\left(y^{2}-1\right)\right) d y=\int_{y=-1}^{y=2}\left(y+2-y^{2}\right) d y
\end{aligned}
$$

6.

Set up, but do not evaluate, an integral which represents the volume of the solid of revolution obtained by revolving the region bounded by the curve $y=9-x^{2}$ and the x-axis about the x -axis.

$$
9-x^{2}=0
$$

(7 points)

$$
9=x^{2}
$$

$$
x= \pm 3
$$

$$
\begin{aligned}
& 9-x^{2}=0 \\
& 9=x^{2} \\
& x= \pm 3
\end{aligned}
$$

$$
\int_{x=-3}^{x=3} \pi\left(9-x^{2}\right)^{2} d x
$$

$$
=\int_{x=-3}^{x=3} \pi\left(81-18 x^{2}+x^{4}\right) d x
$$

7. Let R be the region bounded by $y=2 x^{2}$, the x -axis, and the line $\mathrm{x}=2 . \geq$
(a) Set up, but do not integrate or evaluate, the integral which represents the vo the of the solid of revolution obtained by rotating region \mathbf{R}
(i) about the line $\mathrm{y}=8$

$$
\begin{aligned}
& \text { (i) }{ }^{\text {about the line } y=8} \\
& R_{\text {out }}=8 \Rightarrow A_{\text {out }}=\pi(8)^{2} \\
& r_{\text {inner }}=8-2 x^{2} \Rightarrow A_{\text {inner }}=\pi\left(8-2 x^{2}\right)^{2} \\
& V=\int_{X=0}^{X=2}\left(\pi(8)^{2}-\pi\left(8-2 x^{2}\right)^{2}\right) d x
\end{aligned}
$$

(ii) about the y-axis

$$
y=2 x^{2}
$$

Parallel
(b) The base of a solid is region R described above. (Cross-sections perpendicular to the are isoceles Set up, but do not integrate or evaluate, the integral which represents right triangles the volume of the solid.
(8 points)
with hupsthe ruse

$$
\begin{aligned}
& \text { with hops the ouse base. } \\
& \text { lying along hitherusse }=2 x^{2}
\end{aligned}
$$

$$
V=\int_{0}^{2} x^{4} d x
$$

$$
\begin{aligned}
& \text { Rout }=2 \Rightarrow A_{\text {out }}=\pi(2)^{2}=4 \pi \\
& r_{\text {index }}=\sqrt{\frac{y}{2}} \Rightarrow A_{\text {inner }}=\pi\left(\frac{\sqrt{\frac{y}{2}}}{}\right)^{2} \\
& =\pi \cdot y / 2=\frac{\pi y}{2} \\
& V=\int_{y=0}^{y=8}\left(4 \pi-\frac{\pi}{2} 4\right) \sqrt{4}
\end{aligned}
$$

8. Evaluate each improper integral or show that it diverges.

Show all of your work on the test paper. Full credit is not given unless the answer follows from the work shown.

$$
\text { (a) } \int_{-2}^{3} \frac{1}{x^{3}} d x=\int_{-2}^{0} \frac{1}{x^{3}} d x+\int_{0}^{3} \frac{1}{x^{3}} d x
$$

$$
\lim _{t \rightarrow 0^{-}} \int_{-2}^{t} x^{-3} d x+\lim _{t \rightarrow 0^{+}} \int_{t}^{3} x^{-3} d x
$$

$$
\left.\lim _{t \rightarrow 0^{-}} \frac{x^{-2}}{-2}\right|_{-2} ^{t}+\left.\lim _{t \rightarrow 0^{+}} \frac{x^{-2}}{-2}\right|_{t} ^{3}
$$

$$
\left.\frac{-1}{2 x^{2}}\right|_{-2} ^{t \rightarrow 0^{-}}+\left.\frac{-1}{2 x^{2}}\right|_{t \rightarrow 0^{+}} ^{3}
$$

$$
\text { (b) } \begin{aligned}
\int_{2}^{\infty} e^{-x} d x & =\lim _{t \rightarrow \infty} \int_{2}^{t} e^{-x} d x \\
\lim _{t \rightarrow \infty} & -\left.e^{-x}\right|_{2} ^{t} \\
& =\left.\lim _{t \rightarrow \infty} \frac{-1}{e^{x}}\right|_{2} ^{t} \\
& =\frac{1}{e^{t}}-\frac{-1}{e^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sqrt{9-x^{2}} d x \\
& =\int 3 \cos \theta \cdot 3 \cos \theta d \theta \\
& =9 \int \cos ^{2} \theta d \theta \\
& =9\left[\int \frac{1}{2}(1+\cos 2 \theta) d \theta\right]
\end{aligned}\left\{\begin{array}{l}
\text { HINT: Use the trigonometric substitution } x=3 \sin \theta, \\
x=3 \sin \theta \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
\sqrt{9-x^{2}}=\sqrt{9-9 \sin ^{2} \theta} \\
=3 \sqrt{1-\sin ^{2} \theta}=3 \cos \theta \\
d x=3 \cos \theta d \theta \\
=9\left(\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)\right)+c=\frac{9}{2} \theta+\frac{9}{4}-\sin (2 \theta)+c \\
=\frac{9}{2} \theta+\frac{9}{4} 2 \sin \theta \cos \theta^{+c}=\frac{9}{2}\left[\sin ^{-1}\left(\frac{x}{3}\right)+\frac{x}{3} \cdot \sqrt{9-x^{2}}\right]+c
\end{array}\right.
$$

10. A) Set up, but do not integrate or evaluate, integrals) which represents the area of the region R between the graphs of $\quad y=\frac{1}{x}, \quad y=x, \underset{\text { assume }}{y=\frac{1}{4} x} \times>0$
(Hint: Graph the functions very carefully)

$$
\begin{gathered}
\frac{1}{4} x=\frac{1}{x} \\
\frac{1}{4} x=x=2 \\
\int_{x=0}^{x=1}\left(x-\frac{1}{4} x\right) d x+\int_{x=1}^{x=2}\left(\frac{1}{x}-\frac{1}{4} x\right) d x
\end{gathered}
$$

10. B) Set up, but do not integrate or evaluate, the integrafsbhich represents the volume of the solid of revolution obtained by rotating region R about the x axis.

$$
\int_{x=0}^{x=1}\left(\pi x^{2}-\pi\left(\frac{1}{x} x\right)^{2} d x+\int_{x=1}^{2}\left(\pi\left(\frac{1}{x}\right)^{2}-\pi\left(\frac{1}{4}+x^{2}\right)^{2}\right) d x\right.
$$

$$
\begin{gathered}
\text { class Avg } 85.2 \\
14 A \\
4 B \\
4 C \\
3 D \\
2 F
\end{gathered}
$$

