Dr. Katiraie (50 points + 15 Points Extra Credit) Name
Show all of your work on the test paper. Full credit is not given unless the answer follows from the work shown.
$\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \quad \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \quad \sin 2 \theta=2 \sin \theta \cos \theta$
7(a) Write a power series for $\frac{1}{5-x}$ and state the radius of convergence.
(b) Use this series to find a power series for $\ln (5-x)$ and state the radius of convergence (4 Points) (Hint: Do not forget to find the value of C)
(c) Write a power series for $\frac{1}{5+x}$ and state the radius of convergence.
(d) Use this series to find a power series for $\ln (5+x)$ and state the radius of convergence.
(Hint: Do not forget to find the value of C)
(e) Use your answers to (b) and (d) to find a power series for $\ln \left(\frac{5-x}{5+x}\right)$.

Hint: $\ln \left(\frac{A}{B}\right)=\ln A-\ln B$.
(2 Points)
8. Develop or write the Taylor series for $f(x)=e^{\frac{x}{10}}$ centered at $\quad \mathrm{a}=5 \quad$ (8 Points) Please write your answer in expanded form and in sigma form.

$$
f(x)=\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{1}(a)}{1!}(x-a)^{1}+\frac{f^{2}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots
$$

Page 3 of 6
9(a) Develop or write the Maclaurin series for $f(x)=\cos x$. (6 Points) $f(x)=\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{1}(a)}{1!}(x-a)^{1}+\frac{f^{2}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots$
(b) Use your answer to part (a) to write the Maclaurin series for $f(x)=\cos \left(x^{2}\right)$. (3 Points)
(c) Use your answer to part (b) to write the Maclaurin series for $f(x)=\frac{1-\cos \left(x^{2}\right)}{x}$. (3 Points)
10. Write the first five terms of the Taylor series for $f(x)=\ln x$ centered at $\mathrm{a}=6$.

You do not need to find an expression for the general term.
(8 Points)
$f(x)=\frac{f(a)}{0!}(x-a)^{0}+\frac{f^{1}(a)}{1!}(x-a)^{1}+\frac{f^{2}(a)}{2!}(x-a)^{2}+\frac{f^{3}(a)}{3!}(x-a)^{3}+\ldots$
11. Find the radius and interval of convergence for the power series $\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{8^{n} \ln n}$ and write your answers in the space provided.

Extra Credit

12) A ball is dropped from a height of 100 feet.

Each time it hits the floor, the ball rebounds to $2 / 5$ of its previous height. Find the total distance the ball travels. (Must show procedure in order to get full credit).
13) Find a Cartesian equation for the curve $r=2 \tan \theta \sec \theta$
(Hint: Rewrite $r=2 \tan \theta \sec \theta$ into an equation containing x and y).
(Must show procedure in order to get full credit).

Extra Credit

13) Find the area of the region that lies inside the curve $r=3-3 \sin \theta$ and outside the curve $r=3$
(5 Points)
(Must show procedure in order to get full credit).
