MONTGOMERY COLLEGE Department of Mathematics Rockville Campus

MA 182 - REVIEW PROBLEMS

1. State whether each of the following can be integrated by partial fractions (PF), integration by parts (PI), u-substitution (U), or none of these (N). You do not have to evaluate the integrals.

a.
$$\int \frac{dx}{x^2 - 4}$$
 b. $\int \sqrt{\cos 2x} \, dx$ c. $\int \frac{6x \, dx}{x^2 + 8}$

Integrate:

2.
$$\int \frac{3}{\sqrt{kx}} dx$$
 3. $\int \frac{(5x+3)}{x^3 - 2x^2 - 3x} dx$ 4. $\int 5\sin(3x) dx$

- 5. $\int \frac{6}{\cos^2 3x} dx$ 6. $\int \frac{x}{e^{x^2}} dx$ 7. $\int \arctan x \, dx$
- 8. $\int \sin 2x \, \cos^4 2x \, dx$ 9. $\int \frac{\cos x \, dx}{1 \sin x}$ 10. $\int \frac{2x^3 + x + 3}{x^2} dx$
- 11. $\int \left(1 e^{-x} \right)^2 dx$

Integrate the following using the table of integrals on the inside rear book cover.

- 12. $\int \frac{dx}{25+16x^2}$ 13. $\int \cos^4 2x \, dx$
- 14. $\int \frac{1}{x\sqrt{3+9x^2}} dx$ 15. $\int x^2 \cos 3x \, dx$
- 16. Write $\frac{-2x-6}{(x^2+3)(x-1)}$ as the sum of two partial fractions.
- 17. The velocity *V* at time *t* of a point moving along a coordinate line is $V = te^{-3t}$ ft/sec. If the point is at the origin of t = 0, find a formula for its position *s* at time *t*.
- 18. Food is placed in a freezer. After *t* hours, the temperature of the food is changing at a rate of $R = 10e^{-0.2t}$ where *R* is in degrees F/hr. How much has the temperature dropped in the first two hours?
- 19. Solve $\frac{dy}{dt} = ky^2$ assuming $y \neq 0$. Express y in terms of t.
- 20. Solve $\frac{dy}{dx} = 2xy$ where y(0) = 3 Express y in terms of x.

REVISED SPRING 2008

Determine the convergence or divergence of each integral. If convergent, find the value.

21.
$$\int_{-1}^{1} \frac{dx}{x^{2/3}}$$
 22.
$$\int_{1}^{\infty} \frac{\ln x}{x} dx$$
 23.
$$\int_{0}^{\infty} \frac{\sin x}{e^{x}} dx$$

24. Find the volume of the solid formed when the region bounded by the *x*-axis and the curve $y = 4 - x^2$ is revolved about the *x*-axis.

(3)

25. a. Write an integral equal to the arc length of $y = x^2$ from (1,1) to (3,9).

b. Approximate the arc length with a calculator program.

Evaluate using L'Hopital's Rule or other analytical methods.

26.
$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3}$$
27.
$$\lim_{x \to \infty} \frac{x^2 - 5}{2x^2 + 3x}$$
28.
$$\lim_{x \to \infty} \frac{\sin \left(-\frac{x}{x}\right)}{\frac{2}{x}}$$
29. a. Tell why you cannot use L'Hopital's Rule to find
$$\lim_{x \to 0^+} \frac{\cos x}{x}$$
.

b. Evaluate the limit in part a and give evidence to support your answer.

Evaluate each limit below and give evidence to support your answer.

30.
$$\lim_{x \to \infty} (3 - e^{2x})$$
 31. $\lim_{x \to 1} x^{\frac{1}{x-1}}$

32. An object is thrown vertically upward from a height of 8 ft with a velocity of 48 ft/sec. Use a = -32 ft/sec².

- a. When will it be 40 ft above the ground?
- b. Show how to find the maximum height of the object analytically.
- c. Show how to find when the object hits the ground using information from your graphing calculator.

33. If
$$\int_{0}^{5} g(x) dx = 3$$
 find the average value of $g(x)$ on [0,5].

34. A tank is filling with water. The volume of water in a tank has a rate of change R(t) in ft³/min after t minutes.

What does $\int_{4}^{10} R(t) dt$ represent about the water? Be specific and include the correct units.

35. Let $\frac{dy}{dx} = x + y^2$. Draw the direction field tangents at the points (-2,1) and (3,1) on an *xy*-graph.

x	1	2	3	4	5
g(x)	3	1	2	2	4

36. Using the table below, show how to use n = 2 subintervals and trapezoids to approximate $\int g(x) dx$.

- 37. Find the area of the region enclosed by $y = x^2$ and y = x + 6.
- 38. A spring has a natural length of 12 ft. A force of 80 lb stretches it to a length of 14 ft. Find the work done in stretching it from a length of 15 ft. to a length of 16 ft.
- 39. A tank in the shape of an inverted cone contains some water. The tank has diameter 20 feet at the top and is 15 feet deep (See figure). The water is 8 feet deep and has density $p = 62.5 \text{ lb/ft}^3$. Write an integral that represents the work required to pump all the water over the top rim. Be sure to draw a picture showing how you are setting the problem up. Do not evaluate the integral.

- 40. Sketch a solution to $\frac{dy}{dx} = x + y^2$ with y(1) = 0 by first drawing the slope field on your calculator. Then sketch a solution curve using the slope field.
- 41. Consider the differential equation $\frac{dy}{dx} = x 2y$. Show how to use Euler's Method (without a calculator program) to approximate y(2.3) by starting at (2,1) and using steps of $\Delta x = 0.1$.

42. Let
$$a_n = \frac{n+2}{2n-1}$$

- a. Write the first 4 terms of the sequence $\{a_n\}_{n=1}^{\infty}$
- b. Does {a_n}_{n=1}[∞] have a limit? If so, find it.
 c. Does ∑_{n=1}[∞] a_n converge or diverge? Give a reason for your answer.

43. Let $f(x) = \ln(x+1)$. Find the Taylor Series for x near 0 by taking derivatives. Write the first 4 nonzero

terms of the series.

- 44. a) Find the Taylor polynomial of degree 4 for y = cos(x) with center a = 0.b) Use the result to approximate cos(.2).
 - c) Estimate the magnitude of the error in your approximation in part b.
- 45. Find the Taylor Series for $e^{\frac{x}{2}}$ centered at a = 2 and use the Ratio Test to show that this series converges for all x.
- 46 100 g of a radioactive substance decays. After 10 days, 80 g remain. How much would remain after 14 days?
- 47. A ball is dropped from a height of 40 ft. Each time it hits the floor, the ball rebounds to $\frac{3}{4}$ of its previous height. Find the total distance the ball travels.
- 48. Determine the sum of $\sum_{n=2}^{\infty} \frac{3}{2^{n+2}}$

49. Find a power series representation of $\frac{3}{1+8x^3}$ and state its interval of convergence.

- 50. Determine the convergence or divergence of the following series. Justify your answer.
 - a. $\sum_{n=2}^{\infty} \frac{3n}{n! 2^{n+1}}$ b. $\sum_{n=1}^{\infty} \frac{2n+1}{4n^2+n-1}$ c. $\sum_{n=2}^{\infty} \frac{3}{n\sqrt[3]{\ln n}}$
- 51. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{2n^2+2n}$ converges or diverges. Justify your answer.

52. Determine the radius and interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n 2^n (x+1)^n}{n 3^n}.$

- 53. Find the MacLaurin Series for $\ln(1+x)$ and determine how many terms must be used in this series to find $\ln 1.02$ accurate to 7 decimal places.
- 54. Convert to polar coordinates. Use r > 0 and $0 \le \theta < 2\pi$. a. (2, -2) b. $(-2, -2\sqrt{3})$ c. $(-\sqrt{3}, 1)$
- 55. Convert the polar equation $r = \frac{6}{\sin \theta}$ to an equation in *x* and *y*.
- 56. Sketch the graph of $r = 2 \cos \theta$ without using a graphing calculator.
- 57. Find the area of the region that is inside $r = 2\sin(3\theta)$ and outside r = 1.

REVIEW PROBLEMS - Answers.

1. a. PF b. N c. U
2.
$$\frac{6}{k}\sqrt{kx} + C$$

3. $-\ln/x/-\frac{1}{2}\ln/x + 1/+\frac{3}{2}\ln/x - 3/+C$

$$4. \qquad -\frac{5}{3}\cos\left(3x\right) + C$$

5. $2\tan(3x) + C$ 6. $-\frac{1}{2}e^{-x^2} + C$

7.
$$x \arctan x - \frac{1}{2} \ln |\mathbf{l} + x^2| + C$$
 8. $-\frac{1}{10} \cos^5 2x + C$

9.
$$-\ln|1-\sin x|+C$$
 10. $x^2+\ln|x|-\frac{3}{x}+C$

11.
$$x + 2e^{-x} - \frac{1}{2}e^{-2x} + C$$
 12. $\frac{1}{20}\arctan\left(\frac{4x}{5}\right) + C$

13.
$$\frac{1}{8}\cos^3 2x\sin 2x + \frac{3}{16}\cos 2x\sin 2x + \frac{3}{8}x + C$$

14.
$$-\frac{1}{\sqrt{3}}\ln\left|\frac{\sqrt{3+9x^2}+\sqrt{3}}{3x}\right|+C$$

15.
$$\frac{1}{3}x^2\sin 3x + \frac{2}{9}x\cos 3x - \frac{2}{27}\sin 3x + C$$

16.
$$\frac{2x}{x^2+3} - \frac{2}{x-1}$$

17.
$$S = \left(-\frac{t}{3} - \frac{1}{9}\right)e^{-3t} + \frac{1}{9}$$
 18. 16.5°F

- 19. $y = -\frac{I}{Kt + C}$ 20. $y = 3e^{x^2}$
- 21. Converges to 6 22. Diverges

41.

$$\frac{x}{y} = \frac{2}{1} + \frac{2.1}{1} + \frac{2.2}{1.01} + \frac{2.2}{2.3} + \frac{2.3}{1} + \frac{2.1}{1} + \frac{2.2}{1.01} + \frac{2.2}{1.028}$$
42. a. $3, \frac{4}{3}, 1, \frac{6}{7}$ b. $yes, \frac{1}{2}$ c. diverges by the Test for Divergence
43. $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$
44. a) $1 - \frac{x^2}{2} + \frac{x^4}{24}$ b) 9800666667 c) approximately $\frac{(2)^6}{6!} = 8.9 \times 10^{-8}$
45. $e \sum_{n=0}^{\infty} \frac{1}{2^n} \frac{(x-2)^n}{n!}$ 46. 73.2 g
47. 280 ft 48. $\frac{3}{8}$
49. $\sum_{n=1}^{\infty} 3 \cdot (-8x^3)^{n-1}$ for $-\frac{1}{2} < x < \frac{1}{2}$
50. a. C (Ratio Test) b. D (compare to $\frac{1}{n}$) c. D (integral test)
51. C 52. $\left(-\frac{5}{2}, \frac{1}{2}\right)$ and $R = \frac{3}{2}$
53. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ and first 3 terms must be used.
54. a. $\left(2\sqrt{2}, \frac{7\pi}{4}\right)$ b. $\left(4, \frac{4\pi}{3}\right)$ c. $\left(2, \frac{5\pi}{6}\right)$
55. $y = 6$ 56. a circle with radius 1 and center at (1,0)

57. $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$ or 1.91

182reveiw.spring2008