MONTGOMERY COLLEGE

Department of Mathematics
Rockville Campus

MATH 182 - REVIEW PROBLEMS

1. State whether each of the following can be integrated by partial fractions (PF), integration by parts (PI), u-substitution (U), or none of these (N). You do not have to evaluate the integrals.
a. $\quad \int \frac{d x}{x^{2}-4}$
b. $\quad \int \sqrt{\cos 2 x} d x$
c. $\int \frac{6 x d x}{x^{2}+8}$

Integrate:
2. $\int \frac{3}{\sqrt{k x}} d x$
3. $\int \frac{(5 x+3)}{x^{3}-2 x^{2}-3 x} d x$
4. $\int 5 \sin (3 x) d x$
5. $\int \frac{6}{\cos ^{2} 3 x} d x$
6. $\int \frac{x}{e^{x^{2}}} d x$
7. $\int \arctan x d x$
8. $\int \sin 2 x \cos ^{4} 2 x d x$
9. $\int \frac{\cos x d x}{1-\sin x}$
10. $\int \frac{2 x^{3}+x+3}{x^{2}} d x$
11. $\int\left(1-e^{-x}\right)^{2} d x$

Integrate the following using the table of integrals on the inside rear book cover.
12. $\int \frac{d x}{25+16 x^{2}}$
13. $\int \cos ^{4} 2 x d x$
14. $\int \frac{1}{x \sqrt{3+9 x^{2}}} d x$
15. $\int x^{2} \cos 3 x d x$
16. Write $\frac{-2 x-6}{\left(x^{2}+3\right)(x-1)}$ as the sum of two partial fractions.
17. The velocity V at time t of a point moving along a coordinate line is $V=t e^{-3 t} \mathrm{ft} / \mathrm{sec}$. If the point is at the origin of $t=0$, find a formula for its position s at time t.
18. Food is placed in a freezer. After t hours, the temperature of the food is changing at a rate of $R=10 e^{-0.2 t}$ where R is in degrees F / hr. How much has the temperature dropped in the first two hours?
19. a. Using the table below, show how to use $\mathrm{n}=2$ subintervals and trapezoids to approximate $\int_{1}^{5} r(t) d t$ where $r(t)$ is the population rate in thousands per year at a time t years after Jan. 1, 2009.

t	1	2	3	4	5
$r(t)$	3	1	2	2	4

b. What does the approximation in part (a) tell about the population? Be specific and include the correct units.
20. a. Give the correct four-decimal place approximation from a calculator program for $\int_{1}^{4} e^{-x^{2}} d x$ with 10 midpoint rectangles (M10).
b. Find the correct answer to four decimal places for $\int_{1}^{4} e^{-x^{2}} d x$ with your calculator.
c. What is the error in the approximation for M10 to four decimal places in part a?
21. Solve $\frac{d y}{d t}=\frac{t\left(\sin \left(t^{2}\right)\right.}{y^{2}}$ assuming $y \neq 0$. Express y in terms of t.
22. Solve $\frac{d y}{d x}=2 x y$ where $y(0)=3$ Express y in terms of x.

Evaluate using L'Hopital's Rule or other analytical methods.
23. $\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x^{3}}$
24. $\lim _{x \rightarrow \infty} \frac{x^{2}-5}{2 x^{2}+3 x}$
25. $\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{3}{x}\right)}{\frac{2}{x}}$
26. a. Tell why you cannot use L'Hopital's Rule to find $\lim _{x \rightarrow 0^{+}} \frac{\cos x}{x}$.
b. Evaluate the limit in part a and give evidence to support your answer.

Evaluate each limit below and give evidence to support your answer.
27. $\lim _{x \rightarrow \infty}\left(3-e^{2 x}\right)$
28. $\lim _{x \rightarrow 1} x^{\frac{1}{x-1}}$

Determine the convergence or divergence of each integral. If convergent, find the value.
29. $\int_{-1}^{1} \frac{d x}{x^{2 / 3}}$
30. $\int_{1}^{\infty} \frac{\ln x}{x} d x$
31. $\int_{0}^{\infty} \frac{\sin x}{e^{x}} d x$
32. Find the volume of the solid formed when the region bounded by the x-axis and the curve $y=4-x^{2}$ is revolved about the x-axis.
33. a. Write an integral equal to the arc length of $y=x^{2}$ from $(1,1)$ to $(3,9)$.
b. Approximate the arc length with a calculator program.
34. Find the area of the region enclosed by $y=x^{2}$ and $y=x+6$.
35. If $\int_{0}^{5} g(x) d x=3$ find the average value of $g(x)$ on [0,5].
36. A spring has a natural length of 12 ft . A force of 80 lb stretches it to a length of 14 ft . Find the work done in stretching it from a length of 15 ft . to a length of 16 ft .
37. A tank in the shape of an inverted cone contains some water. The tank has diameter 20 feet at the top and is 15 feet deep (See figure). The water is 8 feet deep and has density $p=62.5 \mathrm{lb} / \mathrm{ft}^{3}$. Write an integral that represents the work required to pump all the water over the top rim. Be sure to draw a picture showing how you are setting the problem up. Do not evaluate the integral.

38. Let $\frac{d y}{d x}=x+y^{2}$. Draw the direction field tangents at the points $(-2,1)$ and $(3,1)$ on an $x y$-graph.
39. Sketch a solution to $\frac{d y}{d x}=x+y^{2}$ with $y(1)=0$ by first drawing the slope field on your calculator. Then sketch a solution curve using the slope field.
40. Consider the differential equation $\frac{d y}{d x}=x-2 y$. Show how to use Euler's Method (without a calculator program) to approximate $y(2.3)$ by starting at $(2,1)$ and using steps of $\Delta x=0.1$.
41. Let $a_{n}=\frac{n+2}{2 n-1}$
a. Write the first 4 terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$
b. Does $\left\{a_{n}\right\}_{n=1}^{\infty}$ have a limit? If so, find it.
c. Does $\sum_{n=1}^{\infty} a_{n}$ converge or diverge? Give a reason for your answer.
43. A ball is dropped from a height of 40 ft . Each time it hits the floor, the ball rebounds to $3 / 4$ of its previous height. Find the total distance the ball travels.
44. Determine the sum of $\sum_{n=2}^{\infty} \frac{3}{2^{n+2}}$
45. Determine the convergence or divergence of the following series. Justify your answer.
a. $\quad \sum_{n=2}^{\infty} \frac{3 n}{n!2^{n+1}}$
b. $\quad \sum_{n=1}^{\infty} \frac{2 n+1}{4 n^{2}+n-1}$
c. $\quad \sum_{n=2}^{\infty} \frac{3}{n \sqrt[3]{\ln n}}$
46. Determine if the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+2)}{2 n^{2}+2 n}$ converges or diverges. Justify your answer.
47. Find a power series representation of $\frac{3}{1+8 x^{3}}$ and state its interval of convergence.
48. Determine the radius and interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}(x+1)^{n}}{n 3^{n}}$.
49. Find the MacLaurin Series for $\ln (1+x)$ and determine how many terms must be used in this series to find $\ln 1.02$ accurate to 7 decimal places.
50. Let $f(x)=\ln (x+1)$. Find the Taylor Series for x near 0 by taking derivatives. Write the first 4 nonzero terms of the series.
51. a) Find the Taylor polynomial of degree 4 for $\mathrm{y}=\cos (\mathrm{x})$ with center $\mathrm{a}=0$.
b) Use the result to approximate $\cos (0.2)$.
c) Estimate the magnitude of the error in your approximation in part b.
52. Find the Taylor Series for $e^{\frac{x}{2}}$ centered at $a=2$ and use the Ratio Test to show that this series converges for all x.
53. Convert to polar coordinates. Use $r>0$ and $0 \leq \theta<2 \pi$.
a. $(2,-2)$
b. $\quad(-2,-2 \sqrt{3})$
c. $\quad(-\sqrt{3}, 1)$
54. Convert the polar equation $r=\frac{6}{\sin \theta}$ to an equation in x and y.
55. Sketch the graph of $r=2 \cos \theta$ without using a graphing calculator.
a. Find the area inside of the region inside $r=2 \sin (3 \theta)$.
b. Find the area of the region that is inside $r=2 \sin (3 \theta)$ and outside $r=1$.

REVIEW PROBLEMS - Answers.

1.

a. PF
b. N
c. U
2. $\frac{6}{k} \sqrt{k x}+C$
3. $-\ln |x|-\frac{1}{2} \ln |x+1|+\frac{3}{2} \ln |x-3|+C$
4. $-\frac{5}{3} \cos (3 x)+C$
5. $2 \tan (3 x)+C$
6. $-\frac{1}{2} e^{-x^{2}}+C$
7. $x \arctan x-\frac{1}{2} \ln \left|1+x^{2}\right|+C$
8. $-\frac{1}{10} \cos ^{5} 2 x+C$
9. $\quad-\ln |1-\sin x|+C$
10. $x^{2}+\ln |x|-\frac{3}{x}+C$
11. $x+2 e^{-x}-\frac{1}{2} e^{-2 x}+C$
12. $\frac{1}{20} \arctan \left(\frac{4 x}{5}\right)+C$
13. $\frac{1}{8} \cos ^{3} 2 x \sin 2 x+\frac{3}{16} \cos 2 x \sin 2 x+\frac{3}{8} x+C$
14. $-\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3+9 x^{2}}+\sqrt{3}}{3 x}\right|+C$
15. $\frac{1}{3} x^{2} \sin 3 x+\frac{2}{9} x \cos 3 x-\frac{2}{27} \sin 3 x+C$
16. $\frac{2 x}{x^{2}+3}-\frac{2}{x-1}$
17. $S=\left(-\frac{t}{3}-\frac{1}{9}\right) e^{-3 t}+\frac{1}{9}$
18. $\quad 16.5^{\circ} \mathrm{F}$
19. a. $\frac{1}{2} \cdot 2(3+2 \cdot 2+4)=11$
b. The population increases by about 11 thousand from Jan. 1, 2009 to Jan. 1, 2014.
20. a. 0.1366
b. 0.1394
c. -0.0028
21. $y=\sqrt[3]{-\frac{3}{2} \cos \left(t^{2}\right)+C}$
22. $y=3 e^{x^{2}}$
23. $\frac{1}{3}$
24. $\frac{1}{2}$
25. $\frac{3}{2}$
26. a. It is not in the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. b. $\quad \infty$ (look at the graph)
27. $-\infty$
29. Converges to 6
31. Converges to $\frac{1}{2}$
32. $\frac{512 \pi}{15}$
33. a. $\int_{1}^{3} \sqrt{1+4 x^{2}} d x$
b. 8.268
34. $\frac{125}{6}$
35. 0.6
36. $140 \mathrm{ft}-\mathrm{lb}$
37. $W=\int_{0}^{8} \pi \frac{4}{9} y^{2}(15-y)(62.5) d y=27.78 \pi \int_{0}^{8} y^{2}(15-y) d y$
38. Hint: slope at $(-2,1)$ is -1 and slope at $(3,1)$ is 4
39.

40.

x	2	2.1	2.2	2.3
y	1	1	1.01	1.028

41.

a. $\quad 3, \frac{4}{3}, 1, \frac{6}{7}$
b. yes, $\frac{1}{2}$
c. diverges by the Test for Divergence
42. $\quad 73.2 \mathrm{~g}$
43. 280 ft
44. $3 / 8$
45.
a. C (Ratio Test)
b. $\quad \mathrm{D}$ (compare to $\frac{1}{n}$)
c. D (integral test)
46. C 47. $\sum_{n=1}^{\infty} 3 \Upsilon\left(-8 x^{3}\right)^{n-1}$ for $-\frac{1}{2}<x<\frac{1}{2}$
48. $\left(-\frac{5}{2}, \frac{1}{2}\right]$ and $R=\frac{3}{2}$
49. $\quad \sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ and first 3 terms must be used.
50. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$
51. a) $1-\frac{x^{2}}{2}+\frac{x^{4}}{24}$
b) .9800666667
c) approximately $\frac{(.2)^{6}}{6!}=8.9 \times 10^{-8}$
52. $e \sum_{n=0}^{\infty} \frac{1}{2^{n}} \frac{(x-2)^{n}}{n!}$
53.
b. $\quad\left(4, \frac{4 \pi}{3}\right)$
c. $\quad\left(2, \frac{5 \pi}{6}\right)$
54. $y=6$
55. a circle with radius 1 and center at $(1,0)$
56. $\begin{array}{lll}\text { a. } \pi & \text { b. } \frac{\pi}{3}+\frac{\sqrt{3}}{2} \quad \text { or } 1.91\end{array}$

182reveiw.last revised summer2014

