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Rates of Change in the Natural and Social Sciences

We know that if y = f(x), then the derivative dy/dx can be 
interpreted as the rate of change of y with respect to x.

If x changes from x1 to x2, then the change in x is

∆x = x2  – x1

and the corresponding change in y is

∆y = f(x2) – f(x1)
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Rates of Change in the Natural and Social Sciences

The difference quotient

is the average rate of change 
of y with respect to x over the 
interval [x1, x2] and can be 
interpreted as the slope of the 
secant line PQ in Figure 1.

mPQ = average rate of change            
m = f ′(x1) = instantaneous rate

of change

Figure 1
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Rates of Change in the Natural and Social Sciences

Its limit as ∆x → 0 is the derivative f ′(x1), which can 
therefore be interpreted as the instantaneous rate of 
change of y with respect to x or the slope of the tangent 
line at P(x1, f(x1)).

Using Leibniz notation, we write the process in the form
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Physics
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Physics
If s = f(t) is the position function of a particle that is moving 
in a straight line, then ∆s/∆t represents the average velocity 
over a time period ∆t, and v = ds/dt represents the 
instantaneous velocity (the rate of change of displacement 
with respect to time).

The instantaneous rate of change of velocity with respect to 
time is acceleration: a(t) = v ′(t) = s″(t).

Now that we know the differentiation formulas, we are able 
to solve problems involving the motion of objects more 
easily.
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Example 1 – Analyzing the Motion of a Particle

The position of a particle is given by the equation

s = f(t) = t3 – 6t2 + 9t

where t is measured in seconds and s in meters.
(a) Find the velocity at time t.
(b) What is the velocity after 2 s? After 4 s?
(c) When is the particle at rest?
(d) When is the particle moving forward (that is, in the 

positive direction)?
(e) Draw a diagram to represent the motion of the particle.
(f) Find the total distance traveled by the particle during the 

first five seconds.
(g) Find the acceleration at time t and after 4 s.
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Example 1 – Analyzing the Motion of a Particle

(h) Graph the position, velocity, and acceleration functions 
for 0 ≤ t ≤ 5.

(i) When is the particle speeding up? When is it slowing 
down?

Solution:
(a) The velocity function is the derivative of the position 

function.
s = f(t) = t3 – 6t2 + 9t

v(t) =        = 3t2 – 12t + 9

cont’d
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Example 1 – Solution
(b) The velocity after 2 s means the instantaneous velocity 

when t = 2 , that is,

v(2) =

= –3 m/s

The velocity after 4 s is

v(4) = 3(4)2 – 12(4) + 9

= 9 m/s

cont’d

= 3(2)2 – 12(2) + 9
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Example 1 – Solution
(c) The particle is at rest when v(t) = 0, that is,

3t2 – 12t + 9 = 3(t2 – 4t + 3)

= 3(t – 1)(t – 3)

= 0

and this is true when t = 1 or t = 3. 

Thus the particle is at rest after 1 s and after 3 s.

cont’d
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Example 1 – Solution
(d) The particle moves in the positive direction when v(t) > 0,

that is,

3t2 – 12t + 9 = 3(t – 1)(t – 3) > 0

This inequality is true when both factors are positive 
(t > 3) or when both factors are negative (t < 1).

Thus the particle moves in the positive direction in the 
time intervals t < 1 and t > 3.

It moves backward (in the negative direction) when
1 < t < 3.

cont’d
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Example 1 – Solution
(e) Using the information from part (d) we make a schematic 

sketch in Figure 2 of the motion of the particle back and 
forth along a line (the s-axis).

cont’d

Figure 2
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Example 1 – Solution
(f) Because of what we learned in parts (d) and (e), we need 

to calculate the distances traveled during the time 
intervals [0, 1], [1, 3], and [3, 5] separately.

The distance traveled in the first second is

| f(1) – f(0)| = |4 – 0|

From t = 1 to t = 3 the distance traveled is

| f(3) – f(1)| = |0 – 4|

From t = 3 to t = 5 the distance traveled is

| f(5) – f(3)| = |20 – 0|

The total distance is 4 + 4 + 20 = 28 m.

cont’d

= 4 m

= 4 m

= 20 m
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Example 1 – Solution
(g) The acceleration is the derivative of the velocity function:

a(t) =          

=

= 6t – 12

a(4) = 6(4) – 12

= 12 m/s2

cont’d
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Example 1 – Solution
(h) Figure 3 shows the graphs of s, v, and a.

cont’d

Figure 3
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Example 1 – Solution
(i) The particle speeds up when the velocity is positive and 

increasing (v and a are both positive) and also when the 
velocity is negative and decreasing (v and a are both 
negative). 

In other words, the particle speeds up when the velocity 
and acceleration have the same sign. (The particle is 
pushed in the same direction it is moving.)

From Figure 3 we see that this happens when 1 < t < 2
and when t > 3.

cont’d
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Example 1 – Solution
The particle slows down when v and a have opposite 
signs, that is, when 0 ≤ t < 1 and when 2 < t < 3.

Figure 4 summarizes the motion of the particle.

cont’d

Figure 4
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Example 2 – Linear Density
If a rod or piece of wire is homogeneous, then its linear
density is uniform and is defined as the mass per unit length
(ρ = m/l) and measured in kilograms per meter. 

Suppose, however, that the rod is not homogeneous but that 
its mass measured from its left end to a point x is m = f(x), 
as shown in Figure 5.

Figure 5
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Example 2 – Linear Density
The mass of the part of the rod that lies between x = x1 and 
x = x2 is given by ∆m = f(x2) – f(x1), so the average density of 
that part of the rod is

If we now let ∆x → 0 (that is, x2 → x1), we are computing the 
average density over smaller and smaller intervals.

The linear density ρ at x1 is the limit of these average 
densities as ∆x → 0; that is, the linear density is the rate of 
change of mass with respect to length.

cont’d
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Example 2 – Linear Density
Symbolically,

Thus the linear density of the rod is the derivative of mass 
with respect to length.
For instance, if m = f(x) =        where x is measured in 
meters and m in kilograms, then the average density of the 
part of the rod given by 1 ≤ x ≤ 1.2 is

while the density right at x = 1 is

cont’d
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Example 3 – Current is the Derivative of Charge

A current exists whenever electric charges move. Figure 6 
shows part of a wire and electrons moving through a plane 
surface, shaded red.

If ∆Q is the net charge that passes through this surface 
during a time period ∆t, then the average current during this 
time interval is defined as

Figure 6
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If we take the limit of this average current over smaller and 
smaller time intervals, we get what is called the current I at 
a given time t1:

Thus the current is the rate at which charge flows through a 
surface. It is measured in units of charge per unit time (often 
coulombs per second, called amperes).

cont’d
Example 3 – Current is the Derivative of Charge
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Chemistry
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Example 4 – Rate of Reaction
A chemical reaction results in the formation of one or more 
substances (called products) from one or more starting 
materials (called reactants).

For instance, the “equation”

2H2 + O2 → 2H2O

indicates that two molecules of hydrogen and one molecule 
of oxygen form two molecules of water. 

Let’s consider the reaction

A + B → C

where A and B are the reactants and C is the product.
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Example 4 – Rate of Reaction
The concentration of a reactant A is the number of moles (1 
mole = 6.022 × 1023 molecules) per liter and is denoted 
by [A]. 

The concentration varies during a reaction, 
so [A], [B], and [C] are all functions of time (t).

The average rate of reaction of the product C over a time 
interval t1 ≤ t ≤ t2 is

cont’d
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Example 4 – Rate of Reaction
But chemists are more interested in the instantaneous rate 
of reaction, which is obtained by taking the limit of the 
average rate of reaction as the time interval ∆t approaches 0:

rate of reaction

Since the concentration of the product increases as the 
reaction proceeds, the derivative d[C]/dt will be positive, and 
so the rate of reaction of C is positive. 

The concentrations of the reactants, however, decrease 
during the reaction, so, to make the rates of reaction of 
A and B positive numbers, we put minus signs in front of the 
derivatives d[A]/dt and d[B]/dt.

cont’d
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Example 4 – Rate of Reaction
Since [A] and [B] each decrease at the same rate that [C] 
increases, we have

rate of reaction

More generally, it turns out that for a reaction of the form

aA + bB → cC + dD
we have

The rate of reaction can be determined from data and 
graphical methods. In some cases there are explicit formulas 
for the concentrations as functions of time, which enable us 
to compute the rate of reaction.

cont’d
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Example 5 – Compressibility
One of the quantities of interest in thermodynamics is 
compressibility. If a given substance is kept at a constant 
temperature, then its volume V depends on its pressure P. 
We can consider the rate of change of volume with respect 
to pressure—namely, the derivative dV/dP. As P increases, 
V decreases, so dV/dP < 0. 

The compressibility is defined by introducing a minus sign 
and dividing this derivative by the volume V:
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Example 5 – Compressibility
Thus β measures how fast, per unit volume, the volume of a 
substance decreases as the pressure on it increases at 
constant temperature.

For instance, the volume V (in cubic meters) of a sample of 
air at 25°C was found to be related to the pressure P            
(in kilopascals) by the equation

The rate of change of V with respect to P when P = 50 kPa 
is

cont’d
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Example 5 – Compressibility

= –0.00212 m3/kPa

The compressibility at that pressure is

= 0.02 (m3/kPa)/m3

cont’d
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Biology
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Example 6 – Rate of Growth of a Population

Let n = f(t) be the number of individuals in an animal or plant 
population at time t.

The change in the population size between the times t = t1
and t = t2 is ∆n = f(t2) – f(t1), and so the average rate of 
growth during the time period t1 ≤ t ≤ t2 is 

average rate of growth

The instantaneous rate of growth is obtained from this 
average rate of growth by letting the time period ∆t 
approach 0:

growth rate
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Example 6 – Rate of Growth of a Population

Strictly speaking, this is not quite accurate because the 
actual graph of a population function n = f(t) would be a step 
function that is discontinuous whenever a birth or death 
occurs and therefore not differentiable.

However, for a large animal 
or plant population, we can 
replace the graph by a smooth 
approximating curve as in 
Figure 7.

cont’d

A smooth curve approximating
a growth function

Figure 7
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Example 6 – Rate of Growth of a Population

To be more specific, consider a population of bacteria in a 
homogeneous nutrient medium. 

Suppose that by sampling the population at certain intervals 
it is determined that the population doubles every hour. 

If the initial population is n0 and the time t is measured in 
hours, then

f(1) = 2f(0)
f(2) = 2f(1)
f(3) = 2f(2)

In general,

f(t) = 2tn0

cont’d

= 2n0

= 22n0

= 23n0
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Example 6 – Rate of Growth of a Population

The population function is n0 = n02t.

We have shown that

So the rate of growth of the bacteria population at time t is

cont’d
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Example 6 – Rate of Growth of a Population

For example, suppose that we start with an initial population 
of n0 = 100 bacteria. 

Then the rate of growth after 4 hours is

This means that, after 4 hours, the bacteria population is 
growing at a rate of about 1109 bacteria per hour.

cont’d
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Example 7 – Blood Flow
When we consider the flow of blood through a blood vessel,
such as a vein or artery, we can model the shape of the 
blood vessel by a cylindrical tube with radius R and length l
as illustrated in Figure 8.

Because of friction at the walls of the tube, the velocity v of 
the blood is greatest along the central axis of the tube and 
decreases as the distance r from the axis increases until v 
becomes 0 at the wall. 

Blood flow in an artery
Figure 8
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Example 7 – Blood Flow
The relationship between v and r is given by the law of
laminar flow discovered by the French physician 
Jean-Louis-Marie Poiseuille in 1840.

This law states that

where η is the viscosity of the blood and P is the pressure 
difference between the ends of the tube. 

If P and l are constant, then v is a function of r with        
domain [0, R].

cont’d
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Example 7 – Blood Flow
The average rate of change of the velocity as we move from 
r = r1 outward to r = r2 is given by

and if we let ∆r → 0, we obtain the velocity gradient, that 
is, the instantaneous rate of change of velocity with respect 
to r:

Using Equation 1, we obtain

cont’d
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Example 7 – Blood Flow
For one of the smaller human arteries we can take η = 0.027, 
R = 0.008 cm, l = 2 cm, and P = 4000 dynes/cm2, which 
gives

≈ 1.85 × 104(6.4 × 10–5 – r2) 

At r = 0.02 cm the blood is flowing at a speed of

v(0.002) ≈ 1.85 × 104(64 × 10–6 – 4 × 10–6) 
= 1.11 cm/s

and the velocity gradient at that point is

cont’d
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Example 7 – Blood Flow
To get a feeling for what this statement means, let’s change 
our units from centimeters to micrometers  
(1 cm = 10,000 µm). Then the radius of the artery is 80 µm. 

The velocity at the central axis is 11,850 µm/s, which 
decreases to 11,110 µm/s at a distance of r = 20 µm. 

The fact that dv/dr = –74 (µm/s)/µm means that, when 
r = 20 µm, the velocity is decreasing at a rate of about 
74 µm/s for each micrometer that we proceed away from the 
center.

cont’d
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Economics
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Example 8 – Marginal Cost
Suppose C(x) is the total cost that a company incurs in

producing x units of a certain commodity.

The function C is called a cost function. If the number of 
items produced is increased from x1 to x2, then the 
additional cost is ∆C = C(x2) – C(x1), and the average rate of 
change of the cost is
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Example 8 – Marginal Cost
The limit of this quantity as ∆x → 0, that is, the instantaneous 
rate of change of cost with respect to the number of items 
produced, is called the marginal cost by economists:

marginal cost

[Since x often takes on only integer values, it may not make 
literal sense to let ∆x approach 0, but we can always replace
C(x) by a smooth approximating function as in Example 6.]

Taking ∆x = 1 and n large (so that ∆x is small compared to n), 
we have

C ′(n) ≈ C(n + 1) – C(n)

cont’d
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Example 8 – Marginal Cost
Thus the marginal cost of producing n units is approximately 
equal to the cost of producing one more unit, the                    
(n + 1)st unit.

It is often appropriate to represent a total cost function by a 
polynomial

C(x) = a + bx + cx2 + dx3

where a represents the overhead cost (rent, heat, 
maintenance) and the other terms represent the cost of raw 
materials, labor, and so on. (The cost of raw materials may 
be proportional to x, but labor costs might depend partly on 
higher powers of x because of overtime costs and 
inefficiencies involved in large-scale operations.)

cont’d
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Example 8 – Marginal Cost
For instance, suppose a company has estimated that the 
cost (in dollars) of producing x items is

C(x) = 10,000 + 5x + 0.01x2

Then the marginal cost function is

C ′(x) = 5 + 0.02x

The marginal cost at the production level of 500 items is

C ′(500) = 5 + 0.02(500)

= $15/ item

cont’d
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Example 8 – Marginal Cost
This gives the rate at which costs are increasing with 
respect to the production level when x = 500 and predicts 
the cost of the 501st item.

The actual cost of producing the 501st item is

C(501) – C(500) = [10,000 + 5(501) +0.01(501)2]

– [10,000 + 5(500) +0.01(500)2]

= $15.01

Notice that C ′(500) ≈ C(501) – C(500).

cont’d
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Other Sciences
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Other Sciences
Rates of change occur in all the sciences. A geologist is 
interested in knowing the rate at which an intruded body of 
molten rock cools by conduction of heat into surrounding 
rocks.

An engineer wants to know the rate at which water flows into 
or out of a reservoir. 

An urban geographer is interested in the rate of change of 
the population density in a city as the distance from the city 
center increases. 

A meteorologist is concerned with the rate of change of 
atmospheric pressure with respect to height.
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A Single Idea, Many Interpretations
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A Single Idea, Many Interpretations
Velocity, density, current, power, and temperature gradient in 
physics; rate of reaction and compressibility in chemistry; 
rate of growth and blood velocity gradient in biology; 
marginal cost and marginal profit in economics; rate of heat 
flow in geology; rate of improvement of performance in 
psychology; rate of spread of a rumor in sociology—these 
are all special cases of a single mathematical concept, the 
derivative.

This is an illustration of the fact that part of the power of 
mathematics lies in its abstractness.
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A Single Idea, Many Interpretations
A single abstract mathematical concept (such as the 
derivative) can have different interpretations in each of the 
sciences. 

When we develop the properties of the mathematical 
concept once and for all, we can then turn around and apply 
these results to all of the sciences. 

This is much more efficient than developing properties of 
special concepts in each separate science.
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