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Indeterminate Forms and l'Hospital's Rule
Suppose we are trying to analyze the behavior of the 
function

Although F is not defined when x = 1, we need to know how 
F behaves near 1. In particular, we would like to know the 
value of the limit

In computing this limit we can’t apply law of limits (the limit 
of a quotient is the quotient of the limits) because the limit of 
the denominator is 0. 
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Indeterminate Forms and l'Hospital's Rule
In fact, although the limit in (1) exists, its value is not 
obvious because both numerator and denominator
approach 0 and    is not defined.

In general, if we have a limit of the form

where both f(x) → 0 and g(x) → 0 as x → a, then this limit 
may or may not exist and is called an indeterminate form 
of type   .
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Indeterminate Forms and l'Hospital's Rule
For rational functions, we can cancel common factors:

We used a geometric argument to show that

But these methods do not work for limits such as (1), so in 
this section we introduce a systematic method, known as 
l’Hospital’s Rule, for the evaluation of indeterminate forms.
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Indeterminate Forms and l'Hospital's Rule
Another situation in which a limit is not obvious occurs when 
we look for a horizontal asymptote of F and need to evaluate 
the limit

It isn’t obvious how to evaluate this limit because both 
numerator and denominator become large as x → .

There is a struggle between numerator and denominator. 
If the numerator wins, the limit will be     ; if the denominator 
wins, the answer will be 0. Or there may be some 
compromise, in which case the answer will be some finite 
positive number.
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Indeterminate Forms and l'Hospital's Rule
In general, if we have a limit of the form

where both f(x) → (or        ) and g(x) → (or        ), then 
the limit may or may not exist and is called an 
indeterminate form of type        . 

This type of limit can be evaluated for certain functions, 
including rational functions, by dividing numerator and 
denominator by the highest power of x that occurs in the 
denominator.
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Indeterminate Forms and l'Hospital's Rule
For instance,

This method does not work for limits such as (2), but 
l’Hospital’s Rule also applies to this type of indeterminate 
form.
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Indeterminate Forms and l'Hospital's Rule
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Example 1 – An Indeterminate Form of Type 0/0

Find .

Solution:
Since

and

we can apply l’Hospital’s Rule:
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Indeterminate Products
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Indeterminate Products
If limx→a f(x) = 0 and limx→a g(x) =      (or        ), then it isn’t 
clear what the value of limx→a f(x)g(x), if any, will be. There is 
a struggle between f and g. If f wins, the limit will be 0; if g 
wins, the answer will be      (or        ). Or there may be a 
compromise where the answer is a finite nonzero number. 

This kind of limit is called an indeterminate form of 
type 0  . We can deal with it by writing the product fg as a 
quotient:

or

This converts the given limit into an indeterminate form of 
type    or        so that we can use l’Hospital’s Rule.
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Example 6
Evaluate limx→0+ x ln x. Use the knowledge of this limit, 
together with information from derivatives, to sketch the 
curve y = x ln x.

Solution:
The given limit is indeterminate because, as x → 0+, the first 
factor (x) approaches 0 while the second factor (ln x) 
approaches        . 

Writing x = 1/(1/x), we have 1/x → as x → 0+, so 
l’Hospital’s Rule gives
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Example 6 – Solution

If f(x) = x ln x, then

f ′(x) = x  + ln x

= 1 + ln x

so f ′(x) = 0 when ln x = –1, which means that x = e–1.

cont’d
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Example 6 – Solution
In fact, f ′(x) > 0 when x > e–1 and f ′(x) < 0 when x < e–1, so
f is increasing on (1/e,     ) and decreasing on (0, 1/e). Thus, 
by the First Derivative Test, f(1/e) = –1/e is a local (and 
absolute) minimum. 

Also, f ′′(x) = 1/x > 0, so f is concave upward on (0,     ). 

We use this information, together 
with the crucial knowledge that 
limx→0+ f(x) = 0, to sketch the curve 
in Figure 5.

cont’d

Figure 5
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Indeterminate Differences
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Indeterminate Differences
If limx→a f(x) =      and limx→a g(x) =     , then the limit

is called an indeterminate form of type           . 

Again there is a contest between f and g. Will the answer be
(f wins) or will it be        (g wins) or will they compromise 

on a finite number? 

To find out, we try to convert the difference into a quotient 
(for instance, by using a common denominator, or 
rationalization, or factoring out a common factor) so that we 
have an indeterminate form of type    or        .
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Example 7 – An Indeterminate Form of Type     –

Compute .

Solution:
First notice that sec x → and tan x → as x → (π/2)–, so 
the limit is indeterminate. Here we use a common 
denominator:

Note that the use of l’Hospital’s Rule is justified because
1 – sin x → 0 and cos x → 0 as x → (π/2)–.
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Indeterminate Powers
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Indeterminate Powers
Several indeterminate forms arise from the limit

1. and type 00

2. and type 

3. and type 
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Indeterminate Powers
Each of these three cases can be treated either by taking 
the natural logarithm:

let    y = [f(x)]g(x), then ln y = g(x) ln f(x)

or by writing the function as an exponential:

[f(x)]g(x) = eg(x) ln f(x)
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Example 8 – An Indeterminate Form of Type 1

Calculate .

Solution:
First notice that as x → 0+, we have 1 + sin 4x → 1 and 
cot x → , so the given limit is indeterminate. 

Let
y = (1 + sin 4x)cot x

Then
ln y = ln [(1 + sin 4x)cot x] 

= cot x ln (1 + sin 4x) 

so l’Hospital’s Rule gives
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Example 8 – Solution

= 4

So far we have computed the limit of ln y, but what we want 
is the limit of y. 

To find this we use the fact that y = e ln y:

cont’d
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