
Integrals 5



Improper Integrals5.10



3

Improper Integrals

In this section we extend the concept of a definite integral to 

the case where the interval is infinite and also to the case 

where f has an infinite discontinuity in [a, b]. In either case 

the integral is called an improper integral.
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Type 1: Infinite Intervals
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Type 1: Infinite Intervals

Consider the infinite region S that lies under the curve 

y = 1/x2, above the x-axis, and to the right of the line x = 1.

You might think that, since S is infinite in extent, its area 

must be infinite, but let’s take a closer look. 

The area of the part of S that lies to the left of the line x = t

(shaded in Figure 1) is

Figure 1
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Type 1: Infinite Intervals

Notice that A(t) < 1 no matter how large t is chosen. We also 

observe that

The area of the shaded region approaches 1 as t → (see 

Figure 2), so we say that the area of the infinite region S is 

equal to 1 and we write

Figure 2
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Type 1: Infinite Intervals

Using this example as a guide, we define the integral of f

(not necessarily a positive function) over an infinite interval 

as the limit of integrals over finite intervals.
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Type 1: Infinite Intervals

Any of the improper integrals in Definition 1 can be 

interpreted as an area provided that f is a positive function. 

For instance, in case (a) if f(x)  0 and the integral

is convergent, then we define the area of the region

S = {(x, y) |x  a, 0  y  f(x)} in Figure 3 to be

This is appropriate because                 is the limit as t → of 

the area under the graph of f from a to t.

Figure 3
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Example 1 

Determine whether the integral                  is convergent or 

divergent.

Solution:

According to part (a) of Definition 1, we have

The limit does not exist as a finite number and so the 

improper integral                  is divergent.
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Type 1: Infinite Intervals

Let’s compare the result of Example 1 with the example 

given at the beginning of this section:

Figure 4 Figure 5
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Type 1: Infinite Intervals

Geometrically, this says that although the curves y = 1/x2

and y = 1/x look very similar for x > 0, the region under 

y = 1/x2 to the right of x = 1 (the shaded region in Figure 4) 

has finite area whereas the corresponding region under 

y = 1/x (in Figure 5) has infinite area. Note that both 1/x2 and 

1/x approach 0 as x → but 1/x2 approaches 0 faster than 

1/x. The values of 1/x don’t decrease fast enough for its 

integral to have a finite value.

We summarize this as follows:
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Type 2: Discontinuous Integrands
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Type 2: Discontinuous Integrands

Suppose that f is a positive continuous function defined on a 

finite interval [a, b) but has a vertical asymptote at b. 

Let S be the unbounded region under the graph of f and 

above the x-axis between a and b. (For Type 1 integrals, the 

regions extended indefinitely in a horizontal direction. Here 

the region is infinite in a vertical direction.) 

The area of the part of S between a and t (the shaded 

region in Figure 7) is

Figure 7
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Type 2: Discontinuous Integrands

If it happens that A(t) approaches a definite number A as

t → b
–
, then we say that the area of the region S is A and we 

write

We use this equation to define an improper integral of 

Type 2 even when f is not a positive function, no matter what 

type of discontinuity f has at b.
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Type 2: Discontinuous Integrands
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Example 5 – Integrating a Function with a Vertical Asymptote

Find

Solution:

We note first that the given integral is improper because

has the vertical asymptote x = 2. 

Since the infinite discontinuity occurs at the left endpoint of

[2, 5], we use part (b) of Definition 3:
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Example 5 – Solution

Thus the given improper integral is convergent and, since 

the integrand is positive, we can interpret the value of the 

integral as the area of the shaded region in Figure 10.

cont’d

Figure 10
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A Comparison Test for Improper 
Integrals
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A Comparison Test for Improper Integrals

Sometimes it is impossible to find the exact value of an 

improper integral and yet it is important to know whether it is 

convergent or divergent. 

In such cases the following theorem is useful. Although we 

state it for Type 1 integrals, a similar theorem is true for Type 

2 integrals.
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A Comparison Test for Improper Integrals

We omit the proof of the Comparison Theorem, but Figure 12 

makes it seem plausible.

If the area under the top curve y = f(x) is finite, then so is the 

area under the bottom curve y = g(x). 

Figure 12
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A Comparison Test for Improper Integrals

If the area under y = g(x) is infinite, then so is the area 

under y = f(x). [Note that the reverse is not necessarily true: 

If                 is convergent,                 may or may not be 

convergent, and if                 is divergent,                 may or 

may not be divergent.]
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Example 9

Show that                is convergent.

Solution:

We can’t evaluate the integral directly because the 

antiderivative of        is not an elementary function.

We write 

and observe that the first integral on the right-hand side is 

just an ordinary definite integral.



23

In the second integral we use the fact that for x  1 we have 

x2  x, so –x2  –x and therefore        e–x. (See Figure 13.) 

The integral of e–x is easy to evaluate:

Example 9 – Solution
cont’d

Figure 13
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Example 9 – Solution

Thus, taking f(x) = e–x and g(x) =        in the Comparison 

Theorem, we see that                 is convergent. 

It follows that                is convergent.

cont’d


