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Evaluating Definite Integrals
We have computed integrals from the definition as a limit of 
Riemann sums and we saw that this procedure is 
sometimes long and difficult. 

Sir Isaac Newton discovered a much simpler method for 
evaluating integrals and a few years later Leibniz made the 
same discovery. 

They realized that they could calculate                 if they 
happened to know an antiderivative F of f. 
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Evaluating Definite Integrals
Their discovery, called the Evaluation Theorem, is part of  
the Fundamental Theorem of Calculus.

This theorem states that if we know an antiderivative F of f, 
then we can evaluate                 simply by subtracting the 
values of F at the endpoints of the interval [a, b]. 
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Evaluating Definite Integrals
It is very surprising that                , which was defined by a 
complicated procedure involving all of the values of f(x) for  
a ≤ x ≤ b, can be found by knowing the values of F(x) at only 
two points, a and b.

For instance, we know that an antiderivative of the function  
f(x) = x2 is F(x) =   x3, so the Evaluation Theorem tells us 
that

Although the Evaluation Theorem may be surprising at first 
glance, it becomes plausible if we interpret it in physical 
terms.
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Evaluating Definite Integrals
If v(t) is the velocity of an object and s(t) is its position at 
time t, then v(t) = s′(t), so s is an antiderivative of v. 

We have considered an object that always moves in the 
positive direction and made the guess that the area under 
the velocity curve is equal to the distance traveled. In 
symbols:

That is exactly what the Evaluation Theorem says in this 
context.
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Evaluating Definite Integrals
When applying the Evaluation Theorem we use the notation

and so we can write

where     F ′ = f

Other common notations are            and             .
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Example 1 – Using the Evaluation Theorem
Evaluate 

Solution:
An antiderivative of f(x) = ex is F(x) = ex, so we use the 
Evaluation Theorem as follows:
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Indefinite Integrals
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Indefinite Integrals
We need a convenient notation for antiderivatives that 
makes them easy to work with. 

Because of the relation given by the Evaluation Theorem 
between antiderivatives and integrals, the notation ∫ f(x) dx 
is traditionally used for an antiderivative of f and is called an 
indefinite integral. Thus
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Indefinite Integrals
You should distinguish carefully between definite and 
indefinite integrals. A definite integral    f(x) dx is a number, 
whereas an indefinite integral ∫ f(x) dx is a function (or family 
of functions).

The connection between them is given by the Evaluation 
Theorem: If f is continuous on [a, b], then
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Indefinite Integrals
If F is an antiderivative of f on an interval I, then the most 
general antiderivative of f on I is F(x) + C, where C is an 
arbitrary constant. For instance, the formula

is valid (on any interval that doesn’t contain 0) because      
(d/dx) ln |x | = 1/x. 

So an indefinite integral ∫ f(x) dx can represent either a 
particular antiderivative of f or an entire family of 
antiderivatives (one for each value of the constant C).
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Indefinite Integrals
The effectiveness of the Evaluation Theorem depends on 
having a supply of antiderivatives of functions. 

We therefore restate the Table of Antidifferentiation 
Formulas, together with a few others, in the notation of 
indefinite integrals. 

Any formula can be verified by differentiating the function on 
the right side and obtaining the integrand. For instance,

∫ sec2x dx = tan x + C  because        (tan x + C) = sec2x
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Indefinite Integrals



15

Example 3
Find the general indefinite integral

∫ (10x4 – 2 sec2x) dx

Solution:
Using our convention and Table 1 and properties of 
integrals, we have

∫ (10x4 – 2 sec2x) dx = 10 ∫ x4 dx – 2 ∫ sec2x dx

= 10       – 2 tan x + C

= 2x5 – 2 tan x + C

You should check this answer by differentiating it.
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Applications
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Applications
The Evaluation Theorem says that if f is continuous on [a, b], 
then

where F is any antiderivative of f. This means that F ′ = f, so 
the equation can be rewritten as
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Applications
We know that F ′(x) represents the rate of change of y = F(x) 
with respect to x and F(b) – F(a) is the change in y when            
x changes from a to b. [Note that y could, for instance, 
increase, then decrease, then increase again. Although y
might change in both directions, F(b) – F(a) represents the 
net change in y.] 

So we can reformulate the Evaluation Theorem in words as 
follows.



19

Applications
This principle can be applied to all of the rates of change in 
the natural and social sciences. Here are a few instances of 
this idea:

 If an object moves along a straight line with position 
function s(t), then its velocity is v(t) = s′(t), so

is the net change of position, or displacement, of the 
particle during the time period from t1 to t2. 
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Applications
We have guessed that this was true for the case where the 
object moves in the positive direction, but now we have 
proved that it is always true.

 If we want to calculate the distance the object travels 
during the time interval, we have to consider the intervals 
when v(t) ≥ 0 (the particle moves to the right) and also 
the intervals when v(t) ≤ 0 (the particle moves to the left). 

In both cases the distance is computed by integrating 
|v(t)|, the speed. Therefore
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Applications
Figure 4 shows how both displacement and distance 
traveled can be interpreted in terms of areas under a 
velocity curve.

displacement =

distance =

Figure 4
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Example 7 – Displacement Versus Distance

A particle moves along a line so that its velocity at time t is 
v(t) = t2 – t – 6 (measured in meters per second).
(a) Find the displacement of the particle during the time      

period 1 ≤ t ≤ 4.
(b) Find the distance traveled during this time period.

Solution:
(a) By Equation 2, the displacement is
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Example 7 – Solution cont’d

This means that the particle’s position at time t = 4 is 4.5 m 
to the left of its position at the start of the time period.

(b) Note that v(t) = t2 – t – 6 = (t – 3)(t + 2) and so v(t) ≤ 0 on   
the interval [1, 3] and v(t) ≥ 0 on [3, 4]. 
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Example 7 – Solution cont’d

Thus, from Equation 3, the distance traveled is
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