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The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is appropriately 

named because it establishes a connection between the  

two branches of calculus: differential calculus and integral 

calculus.

It gives the precise inverse relationship between the

derivative and the integral.
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The Fundamental Theorem of Calculus

The first part of the Fundamental Theorem deals with 

functions defined by an equation of the form

where f is a continuous function on [a, b] and x varies 

between a and b. Observe that g depends only on x, which 

appears as the variable upper limit in the integral. If x is a 

fixed number, then the integral              is a definite number.

If we then let x vary, the number also varies and 

defines a function of x denoted by g(x).
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The Fundamental Theorem of Calculus

If f happens to be a positive function, then g(x) can be 

interpreted as the area under the graph of f from a to x, 

where x can vary from a to b. (Think of g as the “area so far” 

function; see Figure 1.)

Figure 1
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Example 1 – A Function Defined as an Integral

If f is the function whose graph is shown in Figure 2 and 

find the values of g(0), g(1), g(2), g(3), g(4),

and g(5). Then sketch a rough graph of g.

Figure 2
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Example 1 – Solution

First we notice that . 

From Figure 3(i) we see that g(1) is the area 

of a triangle:

To find g(2) we again refer to Figure 3(ii) and 

add to g(1) the area of a rectangle:

Figure 3(i)

Figure 3(ii)

=   (1  2) = 1

= 1 + (1  2) = 3
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Example 1 – Solution

We estimate that the area under f from 2 to 3 is about 1.3, 

so

For t  3, f(t) is negative and so we start subtracting areas:

cont’d

Figure 3(iii)

Figure 3(iv)

 3 + 1.3 = 4.3

 4.3 + (–1.3) = 3.0
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Example 1 – Solution

We use these values to sketch the 

graph of g in Figure 4.

Notice that, because f(t) is positive 

for t  3, we keep adding area for 

t  3 and so g is increasing up to 

x = 3, where it attains a maximum 

value. For x  3, g decreases because 

f(t) is negative.

cont’d

Figure 3(v)

 3 + (–1.3) = 1.7

Figure 4
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The Fundamental Theorem of Calculus

For the function, where a = 1 and f(t) = t2, 

notice that g(x) = x2, that is, g = f. In other words, if g is 

defined as the integral of f by Equation 1, then g turns out to 

be an antiderivative of f, at least in this case. 

And if we sketch the derivative of the function g shown in 

Figure 4 by estimating slopes of tangents, we get a graph 

like that of f in Figure 2. So we suspect that g = f in 

Example 1 too.

Figure 2
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The Fundamental Theorem of Calculus

To see why this might be generally true we consider any 

continuous function f with f(x)  0. Then can 

be interpreted as the area under the graph of f from a to x, 

as in Figure 1.

In order to compute g(x) from the definition of a derivative 

we first observe that, for h  0, g(x + h) – g(x) is obtained by 

subtracting areas, so it is the area under the graph of f              

from x to x + h (the blue area in Figure 5).

Figure 1 Figure 5
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The Fundamental Theorem of Calculus

For small h you can see from the figure that this area is 

approximately equal to the area of the rectangle with                    

height f(x) and width h:

g(x + h) – g(x)  hf(x)

so

Intuitively, we therefore expect that
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The Fundamental Theorem of Calculus

The fact that this is true, even when f is not necessarily 

positive, is the first part of the Fundamental Theorem of 

Calculus.

Using Leibniz notation for derivatives, we can write this 

theorem as

when f is continuous.
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The Fundamental Theorem of Calculus

Roughly speaking, this equation says that if we first 

integrate f and then differentiate the result, we get back to 

the original function f.

It is easy to prove the Fundamental Theorem if we make the 

assumption that f possesses an antiderivative F. Then, by 

the Evaluation Theorem,

for any x between a and b. Therefore

as required. 
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Example 3 – Differentiating an Integral

Find the derivative of the function

Solution:

Since is continuous, Part 1 of the 

Fundamental Theorem of Calculus gives
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Example 4 – A Function from Physics

Although a formula of the form may seem 

like a strange way of defining a function, books on physics, 

chemistry, and statistics are full of such functions. For 

instance, the Fresnel function

is named after the French physicist Augustin Fresnel 

(1788–1827), who is famous for his works in optics.

This function first appeared in Fresnel’s theory of the 

diffraction of light waves, but more recently it has been 

applied to the design of highways.



17

Example 4 – A Function from Physics

Part 1 of the Fundamental Theorem tells us how to 

differentiate the Fresnel function:

This means that we can apply all the methods of differential 

calculus to analyze S.

Figure 6 shows the graphs of 

f(x) = sin(x2/2) and the 

Fresnel function 

cont’d

Figure 6
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Example 4 – A Function from Physics

A computer was used to graph S by computing the value of 

this integral for many values of x.

It does indeed look as if S(x) is the area under the graph of f 

from 0 to x [until x  1.4 when S(x) becomes a difference of 

areas]. Figure 7 shows a larger part of the graph of S.

cont’d

Figure 7
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Example 4 – A Function from Physics

If we now start with the graph of S in Figure 6 and think 

about what its derivative should look like, it seems 

reasonable that S(x) = f(x). [For instance, S is increasing

when f(x)  0 and decreasing when f(x)  0.] So this gives a 

visual confirmation of Part 1 of the Fundamental Theorem of 

Calculus.

cont’d

Figure 6
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Differentiation and Integration as 

Inverse Processes
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Differentiation and Integration as Inverse Processes

We now bring together the two parts of the Fundamental 

Theorem.

We noted that Part 1 can be rewritten as

which says that if f is integrated and then the result is 

differentiated, we arrive back at the original function f. 
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Differentiation and Integration as Inverse Processes

We have reformulated Part 2 as the Net Change Theorem:

This version says that if we take a function F, first 

differentiate it, and then integrate the result, we arrive back 

at the original function F, but in the form F(b) – F(a).

Taken together, the two parts of the Fundamental Theorem 

of Calculus say that differentiation and integration are 

inverse processes. Each undoes what the other does.


