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Trigonometric Integrals
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Trigonometric Integrals

We can use trigonometric identities to integrate certain 

combinations of trigonometric functions.
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Example 1 – An Integral with an Odd Power of cos x

Evaluate  cos3x dx.

Solution:

We would like to use the Substitution Rule, but simply 

substituting u = cos x isn’t helpful, since then du = –sin x dx. 

In order to integrate powers of cosine, we would need an 

extra sin x factor. (Similarly, a power of sine would require 

an extra cos x factor.)

Here we separate one cosine factor and convert the 

remaining cos2x factor to an expression involving sine using 

the identity sin2x + cos2x = 1:

cos3x = cos2x  cos x = (1 – sin2x) cos x
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Example 1 – Solution

We can then evaluate the integral by substituting u = sin x, 

so du = cos x dx and

 cos3x dx =  cos2x  cos x dx  

=  (1 – sin2x) cos x dx

=  (1 – u2)du

= u – u3 + C

= sin x – sin3x + C

cont’d
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Trigonometric Integrals

In general, we try to write an integrand involving powers of 

sine and cosine in a form where we have only one sine 

factor (and the remainder of the expression in terms of 

cosine) or only one cosine factor (and the remainder of the 

expression in terms of sine). 

The identity sin2x + cos2x = 1 enables us to convert back 

and forth between even powers of sine and cosine.
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Trigonometric Integrals

If the integrand contains only even powers of both sine and 

cosine, however, this strategy fails. In this case, we can take 

advantage of the half-angle identities

sin2x =    (1 – cos 2x) 

and                 cos2x =    (1 + cos 2x) 
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Trigonometric Substitution
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Trigonometric Substitution

A number of practical problems require us to integrate 

algebraic functions that contain an expression of the form 

or                . 

Sometimes, the best way to perform  the integration is to 

make a trigonometric substitution that gets rid of the root 

sign.
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Example 3

Prove that the area of a circle with radius r is r2.

Solution: 

For simplicity, let’s place the circle with its center at the 

origin, so its equation is x2 + y2 = r2. Solving this equation 

for y, we get

Because the circle is symmetric                                                     

with respect to both axes, the                                                                     

total area A is four times the area                                                              

in the first quadrant (see Figure 2).

Figure 2
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Example 3 – Solution

The part of the circle in the first quadrant is given by the 

function

and so

To simplify this integral, we would like to make a substitution 

that turns r2 – x2 into the square of something. The 

trigonometric identity 1 – sin2 = cos2 is useful here. In 

fact, because

r2 – r2 sin2 = r2(1 – sin2) 

= r2cos2

cont’d
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Example 3 – Solution

We make the substitution

x = r sin 

Since 0  x  r, we restrict  so that 0    /2. We have    

dx = r cos  d and

because cos   0 when 0    /2. 

cont’d
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Example 3 – Solution

Therefore the Substitution Rule gives

This trigonometric integral is similar to the one in Example 2; 

we integrate cos2 by means of the identity

cos2 =    (1 + cos 2 )

cont’d
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Example 3 – Solution

Thus

We have therefore proved the famous formula A = r2.

cont’d
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Partial Fractions
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Partial Fractions

We integrate rational functions (ratios of polynomials) by 

expressing them as sums of simpler fractions, called partial 

fractions, that we already know how to integrate. 

The following example illustrates the simplest case.
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Example 4

Find

Solution:

Notice that the denominator can be factored as a product of 

linear factors: 
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Example 4 – Solution 

In a case like this, where the numerator has a smaller 

degree than the denominator, we can write the given rational 

function as a sum of partial fractions:

where A and B are constants. 

To find the values of A and B we multiply both sides of this 

equation by (x + 1)(2x – 1), obtaining

5x – 4 = A(2x – 1) + B(x + 1)

or               5x – 4 = (2A + B)x + (–A + B)

cont’d
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Example 4 – Solution 

The coefficients of x must be equal and the constant terms 

are also equal. So

2A + B = 5     and     –A + B = –4

Solving this system of linear equations for A and B, we get  

A = 3 and B = –1, so

cont’d
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Example 4 – Solution 

Each of the resulting partial fractions is easy to integrate 

(using the substitutions u = x + 1 and u = 2x – 1, 

respectively). So we have

cont’d
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Partial Fractions

Note 1: If the degree in the numerator in Example 4 had 

been the same as that of the denominator, or higher, we 

would have had to take the preliminary step of performing a 

long division. For instance,
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Partial Fractions

Note 2: If the denominator has more than two linear factors, 

we need to include a term corresponding to each factor.   

For example,

where A, B, and C are constants determined by solving a 

system of three equations in the unknowns A, B, and C.
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Partial Fractions

Note 3: If a linear factor is repeated, we need to include 

extra terms in the partial fraction expansion. Here’s an 

example:
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Partial Fractions

Note 4: When we factor a denominator as far as possible, it 

might happen that we obtain an irreducible quadratic factor  

ax2 + bx + c, where the discriminant b2 – 4ac is negative.

Then the corresponding partial fraction is of the form

where A and B are constants to be determined. This term 

can be integrated by completing the square and using the 

formula


