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Approximate Integration

There are two situations in which it is impossible to find the 

exact value of a definite integral.

The first situation arises from the fact that in order to 

evaluate               using the Evaluation Theorem we need   

to know an antiderivative of f. 

Sometimes, however, it is difficult, or even impossible, to 

find an antiderivative. For example, it is impossible to 

evaluate the following integrals exactly:
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Approximate Integration

The second situation arises when the function is determined 

from a scientific experiment through instrument readings or 

collected data.

There may be no formula for the function.

In both cases we need to find approximate values of definite 

integrals. We already know one such method. 
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Approximate Integration

Recall that the definite integral is defined as a limit of 

Riemann sums, so any Riemann sum could be used as an 

approximation to the integral: If we divide [a, b] into n

subintervals of equal length x = (b – a)/n, then we have

where xi* is any point in the ith subinterval [xi–1, xi]. If xi* is 

chosen to be the left endpoint of the interval, then xi* = xi–1

and we have



6

Approximate Integration

If f(x)  0, then the integral represents an area and (1) 

represents an approximation of this area by the rectangles 

shown in Figure 1(a) with n = 4.

Figure 1(a)
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Approximate Integration

If we choose xi* to be the right endpoint, then xi* = xi and we 

have

[See Figure 1(b).]

The approximations Ln and Rn

defined by Equations 1 and 2 

are called the left endpoint 

approximation and right endpoint 

approximation, respectively.
Figure 1(b)
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Approximate Integration

We also considered the case where xi* is chosen to be the 

midpoint     of the subinterval [xi–1, xi]. Figure 1(c) shows the 

midpoint approximation Mn, which appears to be better than 

either Ln or Rn.

Figure 1(c)
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Approximate Integration



10

Approximate Integration

Another approximation, called the Trapezoidal Rule, results 

from averaging the approximations in Equations 1 and 2:
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Approximate Integration

The reason for the name Trapezoidal Rule can be seen from 

Figure 2, which illustrates the case with f(x)  0 and n = 4.

Figure 2

Trapezoidal approximation
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Approximate Integration

The area of the trapezoid that lies above the ith subinterval 

is

and if we add the areas of all these trapezoids, we get the 

right side of the Trapezoidal Rule.
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Example 1 

Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with 

n = 5 to approximate the integral

Solution:

(a) With n = 5, a = 1 and b = 2, we have x = (2 – 1)/5 = 0.2, 

and so the Trapezoidal Rule gives

≈ 0.695635
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Example 1 – Solution  

This approximation is illustrated in Figure 3.

Figure 3

cont’d
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Example 1 – Solution  

(b) The midpoints of the five subintervals are 1.1, 1.3, 1.5, 

1.7, and 1.9, so the Midpoint Rule gives

≈ 0.691908

This approximation is 

illustrated in Figure 4.

cont’d

Figure 4
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Approximate Integration

In Example 1 we deliberately chose an integral whose value 

can be computed explicitly so that we can see how accurate 

the Trapezoidal and Midpoint Rules are.

By the fundamental Theorem of Calculus,

The error in using an approximation is defined to be the 

amount that needs to be added to the approximation to 

make it exact.
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Approximate Integration

From the values in Example 1 we see that the errors in the 

Trapezoidal and Midpoint Rule approximations for n = 5 are

ET ≈ –0.002488      and     EM ≈ 0.001239

In general, we have
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Approximate Integration

The following tables show the results of calculations similar 

to those in Example 1, but for n = 5, 10, and 20 and for the 

left and right endpoint approximations as well as the  

Trapezoidal and Midpoint Rules.
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Approximate Integration

We can make several observations from these tables:

1. In all of the methods we get more accurate 

approximations when we increase the value of n. (But 

very large values of n result in so many arithmetic 

operations that we have to beware of accumulated 

round-off error.)

2. The errors in the left and right endpoint approximations 

are opposite in sign and appear to decrease by a factor of 

about 2 when we double the value of n.
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Approximate Integration

3. The Trapezoidal and Midpoint Rules are much more   

accurate than the endpoint approximations.

4. The errors in the Trapezoidal and Midpoint Rules are 

opposite in sign and appear to decrease by a factor of 

about 4 when we double the value of n.

5. The size of the error in the Midpoint Rule is about half the 

size of the error in the Trapezoidal Rule.
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Approximate Integration

Let’s apply this error estimate to the Trapezoidal Rule 

approximation in Example 1. 

If f(x) = 1/x, then f (x) = –1/x2 and f (x) = 2/x3.
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Approximate Integration

Since 1  x  2, we have 1/x  1, so

Therefore, taking K = 2, a = 1, b = 2, and n = 5 in the error 

estimate (3), we see that

Comparing this error estimate of 0.006667 with the actual 

error of about 0.002488, we see that it can happen that the 

actual error is substantially less than the upper bound for the

error given by (3).
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Simpson’s Rule
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Simpson’s Rule

Another rule for approximate integration results from using 

parabolas instead of straight line segments to approximate a 

curve.

As before, we divide [a, b] into n subintervals of equal length 

h = x = (b – a)/n, but this time we assume that n is an even 

number.
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Simpson’s Rule

Then on each consecutive pair of intervals we approximate 

the curve y = f(x)  0 by a parabola as shown in Figure 7.

If yi = f(xi), then Pi(xi, yi) is the point on the curve lying

above xi .

Figure 7
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Simpson’s Rule

A typical parabola passes through three consecutive points  

Pi , Pi+1, and Pi+2.

To simplify our calculations, we first consider the case where 

x0 = –h, x1 = 0, and x2 = h. (See Figure 8.)

Figure 8
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Simpson’s Rule

We know that the equation of the parabola through 

P0, P1, and P2 is of the form y = Ax2 + Bx + C and so the 

area under the parabola from x = –h to x = h is
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Simpson’s Rule

But, since the parabola passes through P0(–h, y0), P1(0, y1),  

and P2(h, y2), we have

y0 = A(–h)2 + B(–h) + C = Ah2 – Bh + C

y1 = C

y2 = Ah2 + Bh + C

and therefore y0 + 4y1 + y2 = 2Ah2 + 6C

Thus we can rewrite the area under the parabola as

(y0 + 4y1 + y2)
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Simpson’s Rule

Now, by shifting this parabola horizontally we do not change 

the area under it. 

This means that the area under the parabola through 

P0, P1, and P2 from x = x0 to x = x2 in Figure 7 is still

(y0 + 4y1 + y2)

Figure 7
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Simpson’s Rule

Similarly, the area under the parabola through P2, P3, and P4

from x = x2 to x = x4 is

(y2 + 4y3 + y4)

If we compute the areas under all the parabolas in this 

manner and add the results, we get
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Simpson’s Rule

Although we have derived this approximation for the case in 

which f(x)  0, it is a reasonable approximation for any 

continuous function f and is called Simpson’s Rule after the 

English mathematician Thomas Simpson (1710–1761).

Note the pattern of coefficients: 

1, 4, 2, 4, 2, 4, 2, . . . , 4, 2, 4, 1.
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Example 4

Use Simpson’s Rule with n = 10 to approximate

Solution:

Putting f(x) = 1/x, n = 10, and x = 0.1 in Simpson’s Rule, 

we obtain



33

Simpson’s Rule

The Trapezoidal Rule or Simpson’s Rule can still be used to 

find an approximate value for              the integral of y with 

respect to x.

The table below shows how Simpson’s Rule compares with 

the Midpoint Rule for the integral                  whose true 

value is about 0.69314718.

The second table shows how the error Es in Simpson’s Rule 

decreases by a factor of about 16 when n is doubled.
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Simpson’s Rule

That is consistent with the appearance of n4 in the 

denominator of the following error estimate for Simpson’s 

Rule. 

It is similar to the estimates given in (3) for the Trapezoidal 

and Midpoint Rules, but it uses the fourth derivative of f.


