

6.3 Volumes by Cylindrical Shells

Volumes by Cylindrical Shells

Let's consider the problem of finding the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$. (See Figure 1.)

Figure 1
If we slice perpendicular to the y-axis, we get a washer.

Volumes by Cylindrical Shells

But to compute the inner radius and the outer radius of the washer, we'd have to solve the cubic equation $y=2 x^{2}-x^{3}$ for x in terms of y, that's not easy.

Fortunately, there is a method, called the method of cylindrical shells, that is easier to use in such a case. Figure 2 shows a cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h.

Figure 2

Volumes by Cylindrical Shells

Its volume V is calculated by subtracting the volume V_{1} of the inner cylinder from the volume V_{2} of the outer cylinder:

$$
\begin{aligned}
V & =V_{2}-V_{1} \\
& =\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi\left(r_{2}^{2}-r_{1}^{2}\right) h \\
& =\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h \\
& =2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}-r_{1}\right)
\end{aligned}
$$

Volumes by Cylindrical Shells

If we let $\Delta r=r_{2}-r_{1}$ (the thickness of the shell) and $r=\frac{1}{2}\left(r_{2}+r_{1}\right)$ (the average radius of the shell), then this formula for the volume of a cylindrical shell becomes

1

$$
V=2 \pi r h \Delta r
$$

and it can be remembered as
$V=$ [circumference] [height] [thickness]

Volumes by Cylindrical Shells

Now let S be the solid obtained by rotating about the y-axis the region bounded by $y=f(x)$ [where $f(x) \geq 0$], $y=0, x=a$ and $x=b$, where $b>a \geq 0$. (See Figure 3.)

Figure 3
We divide the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{j}\right]$ of equal width Δx and let \bar{x}_{i} be the midpoint of the ith subinterval.

Volumes by Cylindrical Shells

If the rectangle with base $\left[x_{i-1}, x_{i}\right]$ and height $f\left(\bar{x}_{i}\right)$ is rotated about the y-axis, then the result is a cylindrical shell with average radius \bar{x}_{i}, height $f\left(\bar{x}_{i}\right)$, and thickness Δx (see Figure 4), so by Formula 1 its volume is

$$
V_{i}=\left(2 \pi \bar{x}_{i}\right)\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

Figure 4

Volumes by Cylindrical Shells

Therefore an approximation to the volume V of S is given by the sum of the volumes of these shells:

$$
V \approx \sum_{i=1}^{n} V_{i}=\sum_{i=1}^{n} 2 \pi \bar{x}_{i} f\left(\bar{x}_{i}\right) \Delta x
$$

This approximation appears to become better as $n \rightarrow \infty$.

But, from the definition of an integral, we know that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \bar{x}_{i} f\left(\bar{x}_{i}\right) \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

Volumes by Cylindrical Shells

Thus the following appears plausible:

2 The volume of the solid in Figure 3, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to b, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } 0 \leqslant a<b
$$

Volumes by Cylindrical Shells

The best way to remember Formula 2 is to think of a typical shell, cut and flattened as in Figure 5, with radius x, circumference $2 \pi x$, height $f(x)$, and thickness Δx or $d x$:

$$
\int_{a}^{b} \underbrace{(2 \pi x)}_{\text {circumference }} \underbrace{[f(x)]}_{\text {height }} \underbrace{d x}_{\text {thickness }}
$$

Figure 5
This type of reasoning will be helpful in other situations, such as when we rotate about lines other than the y-axis.

Example 1 - Using the Shell Method

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

Solution:

From the sketch in Figure 6 we see that a typical shell has radius x, circumference $2 \pi x$, and height $f(x)=2 x^{2}-x^{3}$.

Figure 6

Example 1 - Solution

So, by the shell method, the volume is

$$
\begin{aligned}
V & =\int_{0}^{2}(2 \pi x)\left(2 x^{2}-x^{3}\right) d x \\
& =2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x \\
& =2 \pi\left[\frac{1}{2} x^{4}-\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =2 \pi\left(8-\frac{32}{5}\right) \\
& =\frac{16}{5} \pi
\end{aligned}
$$

It can be verified that the shell method gives the same answer as slicing.

