
6.5 Average Value of a Function

Average Value of a Function

It is easy to calculate the average value of finitely many numbers $y_{1}, y_{2}, \ldots, y_{n}$:

$$
y_{\mathrm{ave}}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n}
$$

But how do we compute the average temperature during a day if infinitely many temperature readings are possible?

Figure 1 shows the graph of a temperature function $T(t)$, where t is measured in hours and T in ${ }^{\circ} \mathrm{C}$, and a guess at the average temperature, $T_{\text {ave }}$.

Figure 1

Average Value of a Function

In general, let's try to compute the average value of a function $y=f(x), a \leq x \leq b$. We start by dividing the interval $[a, b]$ into n equal subintervals, each with length $\Delta x=(b-a) / n$.

Then we choose points $x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}$ in successive subintervals and calculate the average of the numbers $f\left(x_{1}{ }^{*}\right), \ldots, f\left(x_{n}{ }^{*}\right)$:

$$
\underline{f\left(x_{1}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}
$$

n
(For example, if f represents a temperature function and $n=24$, this means that we take temperature readings every hour and then average them.)

Average Value of a Function

Since $\Delta x=(b-a) / n$, we can write $n=(b-a) / \Delta x$ and the average value becomes

$$
\begin{aligned}
\frac{f\left(x_{1}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}{\frac{b-a}{\Delta x}} & =\frac{1}{b-a}\left[f\left(x_{1}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x\right] \\
& =\frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
\end{aligned}
$$

If we let n increase, we would be computing the average value of a large number of closely spaced values.

Average Value of a Function

The limiting value is

$$
\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

by the definition of a definite integral.

Therefore we define the average value of f on the interval [a, b] as

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Example 1

Find the average value of the function $f(x)=1+x^{2}$ on the interval [-1, 2].

Solution:

With $a=-1$ and $b=2$ we have

$$
\begin{aligned}
f_{\text {ave }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& =\frac{1}{2-(-1)} \int_{-1}^{2}\left(1+x^{2}\right) d x \\
& =\frac{1}{3}\left[x+\frac{x^{3}}{3}\right]_{-1}^{2} \\
& =2
\end{aligned}
$$

Average Value of a Function

If $T(t)$ is the temperature at time t, we might wonder if there is a specific time when the temperature is the same as the average temperature.

For the temperature function graphed in Figure 1, we see that there are two such times-just before noon and just before midnight.

Figure 1

In general, is there a number c at which the value of a function f is exactly equal to the average value of the function, that is, $f(c)=f_{\text {ave }}$?

Average Value of a Function

The following theorem says that this is indeed the case for continuous functions.

The Mean Value Theorem for Integrals If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that
that is,

$$
\begin{gathered}
f(c)=f_{\mathrm{ave}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
\int_{a}^{b} f(x) d x=f(c)(b-a)
\end{gathered}
$$

The Mean Value Theorem for Integrals is a consequence of the Mean Value Theorem for derivatives and the Fundamental Theorem of Calculus.

Average Value of a Function

The geometric interpretation of the Mean Value Theorem for Integrals is that, for positive functions f, there is a number c such that the rectangle with base $[a, b]$ and height $f(c)$ has the same area as the region under the graph of f from a to b. (See Figure 2.)

Figure 2

