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Applications to Physics and Engineering

Among the many applications of integral calculus to physics 

and engineering, we consider three: work, force due to 

water pressure, and centers of mass.
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Work
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Work

The term work is used in everyday language to mean the 

total amount of effort required to perform a task. 

In physics it has a technical meaning that depends on the 

idea of a force.

Intuitively, you can think of a force as describing a push or 

pull on an object—for example, a horizontal push of a book 

across a table or the downward pull of the earth’s gravity on 

a ball.
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Work

In general, if an object moves along a straight line with 

position function s(t), then the force F on the object (in the 

same direction) is defined by Newton’s Second Law of 

Motion as the product of its mass m and its acceleration:

In the SI metric system, the mass is measured in 

kilograms (kg), the displacement in meters (m), the time in 

seconds (s), and the force in newtons (N = kg  m/s2).
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Work

Thus a force of 1 N acting on a mass of 1 kg produces an 

acceleration of 1 m/s2. In the US Customary system the 

fundamental unit is chosen to be the unit of force, which is 

the pound.

In the case of constant acceleration, the force F is also 

constant and the work done is defined to be the product of 

the force F and the distance d that the object moves:

If F is measured in newtons and d in meters, then the unit 

for W is a newton-meter, which is called a joule (J). If F is 

measured in pounds and d in feet, then the unit for W is a 

foot-pound (ft-lb), which is about 1.36 J.



8

Work

For instance, suppose you lift a 1.2-kg book off the floor to 

put it on a desk that is 0.7 m high. The force you exert is 

equal and opposite to that exerted by gravity, so Equation 1 

gives

F = mg = (1.2)(9.8) = 11.76 N

and then Equation 2 gives the work done as

W = Fd = (11.76)(0.7)  8.2 J

But if a 20-lb weight is lifted 6 ft off the ground, then the 

force is given as F = 20 lb, so the work done is

W = Fd = 20  6 = 120 ft-lb
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Work

Here we didn’t multiply by g because we were given the 

weight (a force) and not the mass.

Equation 2 defines work as long as the force is constant, but 

what happens if the force is variable?

Let’s suppose that the object moves along the x-axis in the 

positive direction, from x = a to x = b, and at each point x

between a and b a force f(x) acts on the object, where f is a 

continuous function.

We divide the interval [a, b] into n subintervals with 

endpoints x0, x1, . . . , xn and equal width x.
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Work

We choose a sample point xi* in the i th subinterval [xi–1, xi]. 

Then the force at that point is f(xi*).

If n is large, then x is small, and since f is continuous, the 

values of f don’t change very much over the interval [xi–1, xi]. 

In other words, f is almost constant on the interval and so 

the work Wi that is done in moving the particle from xi–1 to xi

is approximately given by Equation 2:

Wi  f(xi*) x
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Work

Thus we can approximate the total work by

It seems that this approximation becomes better as we 

make n larger. Therefore we define the work done in 

moving the object from a to b as the limit of this quantity 

as n → . Since the right side of (3) is a Riemann sum, we 

recognize its limit as being a definite integral and so
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Example 1 – Work Done by a Variable Force

When a particle is located a distance x feet from the origin, a 

force of x2 + 2x pounds acts on it. How much work is done in 

moving it from x = 1 to x = 3?

Solution:

The work done is       ft-lb.
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Work

Hooke’s Law states that the force required to maintain a 

spring stretched x units beyond its natural length is 

proportional to x:

f(x) = kx

where k is a positive constant (called the spring constant). 

Hooke’s Law holds provided that x is not too large 

(see Figure 1).

Figure 1 Hooke’s Law
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Hydrostatic Pressure and Force
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Hydrostatic Pressure and Force

Deep-sea divers realize that water pressure increases as 

they dive deeper. This is because the weight of the water 

above them increases.

In general, suppose that a thin horizontal plate with area A

square meters is submerged in a fluid of density  kilograms 

per cubic meter at a depth d meters below the surface of the 

fluid as in Figure 5.

Figure 5
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Hydrostatic Pressure and Force

The fluid directly above the plate has volume V = Ad, so its 

mass is m = V = Ad. The force exerted by the fluid on the 

plate is therefore

F = mg = gAd

where g is the acceleration due to gravity. The pressure P on 

the plate is defined to be the force per unit area:

The SI unit for measuring pressure is newtons per square 

meter, which is called a pascal (abbreviation: 1 N/m2 = 1 Pa). 

Since this is a small unit, the kilopascal (kPa) is often used.
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Hydrostatic Pressure and Force

For instance, because the density of water is  = 1000 kg/m3, 

the pressure at the bottom of a swimming pool 2 m deep is

P = gd = 1000 kg/m3  9.8 m/s2  2 m

= 19,600 Pa = 19.6 kPa

An important principle of fluid pressure is the experimentally 

verified fact that at any point in a liquid the pressure is the 

same in all directions. (A diver feels the same pressure on 

nose and both ears.)
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Hydrostatic Pressure and Force

Thus the pressure in any direction at a depth d in a fluid with 

mass density  is given by

P = gd = d

This helps us determine the hydrostatic force against a 

vertical plate or wall or dam in a fluid.

This is not a straightforward problem because the pressure is 

not constant but increases as the depth increases.
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Example 5 – Hydrostatic Force on a Dam

A dam has the shape of the trapezoid shown in Figure 6. The 

height is 20 m and the width is 50 m at the top and 30 m at 

the bottom. Find the force on the dam due to hydrostatic 

pressure if the water level is 4 m from the top of the dam.

Figure 6
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Example 5 – Solution

We choose a vertical x-axis with origin at the surface of the 

water as in Figure 7(a). 

The depth of the water is 16 m, so we divide the interval 

[0, 16] into subintervals of equal length with endpoints xi and 

we choose xi*  [xi–1, xi].

Figure 7(a)
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Example 5 – Solution

The i th horizontal strip of the dam is approximated by a 

rectangle with height x and width wi, where, from similar 

triangles in Figure 7(b),

or

and so

wi = 2(15 + a)

= 2(15 + 8 – xi*)

= 46 – xi*

cont’d

Figure 7(b)
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Example 5 – Solution

If Ai is the area of the i th strip, then

Ai  wi x

= (46 – xi*) x

If x is small, then the pressure Pi on the i th strip is almost 

constant and we can use Equation 5 to write

Pi  1000gxi*

The hydrostatic force Fi acting on the i th strip is the product 

of the pressure and the area:

Fi = PiAi

 1000gxi*(46 – xi*) x

cont’d
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Example 5 – Solution

Adding these forces and taking the limit as n → , we obtain 

the total hydrostatic force on the dam:

cont’d
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Moments and Centers of Mass
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Moments and Centers of Mass

Our main objective here is to find the point P on which a thin 

plate of any given shape balances horizontally as in Figure 8.

This point is called the center of mass (or center of gravity) 

of the plate.

Figure 8
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Moments and Centers of Mass

We first consider the simpler situation illustrated in Figure 9, 

where two masses m1 and m2 are attached to a rod of 

negligible mass on opposite sides of a fulcrum and at 

distances d1 and d2 from the fulcrum.

The rod will balance if

m1d1 = m2d2

Figure 9
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Moments and Centers of Mass

This is an experimental fact discovered by Archimedes and 

called the Law of the Lever. (Think of a lighter person 

balancing a heavier one on a seesaw by sitting farther away 

from the center.)

Now suppose that the rod lies along the x-axis with m1 at x1

and m2 at x2 and the center of mass at
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Moments and Centers of Mass

If we compare Figures 9 and 10, we see that                    and 

and so Equation 6 gives

Figure 9

Figure 10
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Moments and Centers of Mass

The numbers m1x1 and m2x2 are called the moments of the 

masses m1 and m2 (with respect to the origin), and 

Equation 7 says that the center of mass     is obtained by 

adding the moments of the masses and dividing by the total 

mass m = m1 + m2.
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Moments and Centers of Mass

In general, if we have a system of n particles with masses 

m1, m2, . . . , mn located at the points x1, x2, . . . , xn on the 

x-axis, it can be shown similarly that the center of mass of 

the system is located at

where m =  mi is the total mass of the system, and the sum 

of the individual moments

is called the moment of the system about the origin.
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Moments and Centers of Mass

Then Equation 8 could be rewritten as m = M, which says 

that if the total mass were considered as being concentrated 

at the center of mass   , then its moment would be the same 

as the moment of the system.

Now we consider a system 

of n particles with masses 

m1, m2, . . . , mn located 

at the points 

(x1, y1), (x2, y2), . . . , (xn, yn) 

in the xy-plane as shown 

in Figure 11. Figure 11
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Moments and Centers of Mass

By analogy with the one-dimensional case, we define the 

moment of the system about the y-axis to be

and the moment of the system about the x-axis as

Then My measures the tendency of the system to rotate 

about the y-axis and Mx measures the tendency to rotate 

about the x-axis.
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Moments and Centers of Mass

As in the one-dimensional case, the coordinates          of the 

center of mass are given in terms of the moments by the 

formulas

where m =  mi is the total mass. Since m = My and 

m = Mx, the center of mass          is the point where a single 

particle of mass m would have the same moments as the 

system.
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Example 6 

Find the moments and center of mass of the system of 

objects that have masses 3, 4, and 8 at the points (–1, 1), 

(2, –1), and (3, 2).

Solution:

We use Equations 9 and 10 to compute the moments:

My = 3(–1) + 4(2) + 8(3) = 29

Mx = 3(1) + 4(–1) + 8(2) = 15

Since m = 3 + 4 + 8 = 15, we use Equations 11 to obtain
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Example 6 – Solution

Thus the center of mass is (See Figure 12.)

cont’d

Figure 12
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Moments and Centers of Mass

Next we consider a flat plate (called a lamina) with uniform 
density  that occupies a region R of the plane. 

We wish to locate the center of mass of the plate, which is 
called the centroid of R. 

In doing so we use the following physical principles: The 
symmetry principle says that if R is symmetric about a line l, 

then the centroid of R lies on l. (If R is reflected about l, then 

R remains the same so its centroid remains fixed. But the 

only fixed points lie on l.)

Thus the centroid of a rectangle is its center.
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Moments and Centers of Mass

Moments should be defined so that if the entire mass of a 

region is concentrated at the center of mass, then its 

moments remain unchanged.

Also, the moment of the union of two nonoverlapping regions 

should be the sum of the moments of the individual regions.

Suppose that the region R is of 

the type shown in Figure 13(a); 
that is, R lies between the 

lines x = a and x = b, above 

the x-axis, and beneath the graph 

of f, where f is a continuous 

function.
Figure 13(a)
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Moments and Centers of Mass

We divide the interval [a, b] into n subintervals with endpoints 

x0, x1, . . . , xn and equal width x. We choose the sample 

point xi* to be the midpoint    of the i th subinterval, that is,

This determines the polygonal approximation to R shown in 

Figure 13(b).

Figure 13(b)
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Moments and Centers of Mass

The centroid of the i th approximating rectangle Ri is its center 

Its area is so its mass is

The moment of Ri about the y-axis is the product of its mass 

and the distance from Ci to the y-axis, which is     Thus

Adding these moments, we obtain the moment of the 
polygonal approximation to R, and then by taking the limit as 

n → we obtain the moment of R itself about the y-axis:
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Moments and Centers of Mass

In a similar fashion we compute the moment of Ri about the 

x-axis as the product of its mass and the distance from Ci

to the x-axis:

Again we add these moments and take the limit to obtain 
the moment of R about the x-axis:
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Moments and Centers of Mass

Just as for systems of particles, the center of mass of the 

plate is defined so that                and                But the mass 

of the plate is the product of its density and its area:

and so
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Moments and Centers of Mass

Notice the cancellation of the ’s. The location of the center 

of mass is independent of the density.

In summary, the center of mass of the plate (or the centroid 
of R) is located at the point         , where


