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Applications to Economics and Biology

In this section we consider some applications of integration 

to economics (consumer surplus) and biology (blood flow, 

cardiac output).
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Consumer Surplus
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Consumer Surplus

Recall that the demand function p(x) is the price that a 

company has to charge in order to sell x units of a 

commodity. 

Usually, selling larger quantities 

requires lowering prices, so the 

demand function is a decreasing 

function. The graph of a typical 

demand function, called a 

demand curve, is shown in Figure 1. 

If X is the amount of the commodity that 

is currently available, then P = p(X) is

the current selling price. 

Figure 1

A typical demand curve
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Consumer Surplus

We divide the interval [0, X ] into n subintervals, each of 

length x = X/n, and let xi
* = xi be the right endpoint of the ith 

subinterval, as in Figure 2. 

If, after the first xi – 1 units were 

sold, a total of only xi units had 

been available and the price per 

unit had been set at p(xi) dollars, 

then the additional x units could 

have been sold (but no more). 

Figure 2



7

Consumer Surplus

The consumers who would have paid p(xi) dollars placed a 

high value on the product; they would have paid what it was 

worth to them. 

So, in paying only P dollars they have saved an amount of

(savings per unit)(number of units) = [p(xi) – P] x
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Consumer Surplus

Considering similar groups of willing consumers for each of 

the subintervals and adding the savings, we get the total 

savings: 

[p(xi) – P] x

(This sum corresponds to

the area enclosed by the

rectangles in Figure 2.) 

Figure 2
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Consumer Surplus

If we let n → , this Riemann sum approaches the integral

which economists call the consumer surplus for the 

commodity. 

The consumer surplus represents the amount of money 

saved by consumers in purchasing the commodity at 

price P, corresponding to an amount demanded of X. 
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Consumer Surplus

Figure 3 shows the interpretation of the consumer surplus 

as the area under the demand curve and above the line        

p = P.

Figure 3
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Example 1 – Consumer Surplus

The demand for a product, in dollars, is

p = 1200 – 0.2x – 0.0001x2

Find the consumer surplus when the sales level is 500.

Solution:

Since the number of products sold is X = 500, the 

corresponding price is

P = 1200 – (0.2)(500) – (0.0001)(500)2

= 1075



12

Therefore, from Definition 1, the consumer surplus is

[p(x) – P] dx =      (1200 – 0.2x – 0.0001x2 – 1075) dx

=       (125 – 0.2x – 0.0001x2) dx

= 125x – 0.1x2 – (0.0001)

= (125)(500) – (0.1)(500)2 –

= $33,333.33

Example 1 – Solution
cont’d
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Blood Flow
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We have discussed the law of laminar flow:

which gives the velocity v of blood that flows along a blood 

vessel with radius R and length l at a distance r from the 

central axis, where P is the pressure difference between the 

ends of the vessel and  is the viscosity of the blood. 

Now, in order to compute the rate of blood flow, or flux 

(volume per unit time), we consider smaller, equally spaced 

radii r1, r2, . . . . 

Blood Flow
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The approximate area of the ring (or washer) with inner 

radius ri – 1 and outer radius ri is 

2ri r where r = ri – ri –1

(See Figure 4.)

Blood Flow

Figure 4
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If r is small, then the velocity is almost constant 

throughout this ring and can be approximated by v(ri). 

Thus the volume of blood per unit time that flows across 

the ring is approximately 

(2ri r) v(ri) = 2ri v(ri) r

and the total volume of blood that flows across a 

cross-section per unit time is about

2ri v(ri) r

This approximation is

illustrated in Figure 5.

Blood Flow

Figure 5
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Notice that the velocity (and hence the volume per unit time) 

increases toward the center of the blood vessel.

The approximation gets better as n increases.

When we take the limit we get the exact value of the flux  

(or discharge), which is the volume of blood that passes a 

cross-section per unit time:

Blood Flow
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Blood Flow
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The resulting equation

is called Poiseuille’s Law; it shows that the flux is 

proportional to the fourth power of the radius of the blood 

vessel.

Blood Flow
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Cardiac Output
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Figure 6 shows the human cardiovascular system. 

Cardiac Output

Figure 6
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Blood returns from the body through the veins, enters the 

right atrium of the heart, and is pumped to the lungs through 

the pulmonary arteries for oxygenation. 

It then flows back into the left atrium through the pulmonary 

veins and then out to the rest of the body through the aorta. 

The cardiac output of the heart is the volume of blood 

pumped by the heart per unit time, that is, the rate of flow 

into the aorta. 

The dye dilution method is used to measure the cardiac 

output.

Cardiac Output
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Dye is injected into the right atrium and flows through the 

heart into the aorta. A probe inserted into the aorta 

measures the concentration of the dye leaving the heart at 

equally spaced times over a time interval [0, T ] until the dye 

has cleared. 

Let c(t) be the concentration of the dye at time t. If we divide 

[0, T ] into subintervals of equal length t, then the amount of 

dye that flows past the measuring point during the 

subinterval from t = ti–1 to t = ti is approximately 

(concentration)(volume) = c(ti)(F t)

where F is the rate of flow that we are trying to determine.

Cardiac Output
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Thus the total amount of dye is approximately

c(ti)F t = F c(ti) t

and, letting n → , we find that the amount of dye is

A = F    c(t) dt

Thus the cardiac output is given by

where the amount of dye A is known and the integral can be 

approximated from the concentration readings.

Cardiac Output
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Example 2 – Cardiac Output

A 5-mg bolus of dye is injected into a right atrium. The 

concentration of the dye (in milligrams per liter) is measured 

in the aorta at one-second intervals as shown in the chart. 

Estimate the cardiac output.
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Example 2 – Solution

Here A = 5, t = 1, and T = 10. We use Simpson’s Rule to 

approximate the integral of the concentration:

c(t) dt  [0 + 4(0.4) + 2(2.8) + 4(6.5) + 2(9.8) + 4(8.9)

+ 2(6.1) + 4(4.0) + 2(2.3) + 4(1.1) + 0]

 41.87

Thus Formula 3 gives the cardiac output to be



 0.12 L/s = 7.2 L/min


