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Modeling with Differential Equations

The mathematical model often takes the form of a 

differential equation, that is, an equation that contains an 

unknown function and some of its derivatives. 

This is not surprising because in a real-world problem we 

often notice that changes occur and we want to predict 

future behavior on the basis of how current values change. 

Let’s begin by examining several examples of how 

differential equations arise when we model physical 

phenomena.
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Models of Population Growth
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Models of Population Growth

One model for the growth of a population is based on the 

assumption that the population grows at a rate proportional 

to the size of the population. 

That is a reasonable assumption for a population of bacteria 

or animals under ideal conditions (unlimited environment, 

adequate nutrition, absence of predators, immunity from 

disease).

Let’s identify and name the variables in this model:

t = time (the independent variable)

P = the number of individuals in the population 

(the dependent variable)
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Models of Population Growth

The rate of growth of the population is the derivative dP/dt. 

So our assumption that the rate of growth of the population 

is proportional to the population size is written as the 

equation

where k is the proportionality constant. Equation 1 is our first 

model for population growth; it is a differential equation 

because it contains an unknown function P and its derivative 

dP/dt.
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Models of Population Growth

Having formulated a model, let’s look at its consequences. If 

we rule out a population of 0, then P(t) > 0 for all t. So, if 

k > 0, then Equation 1 shows that P(t) > 0 for all t.

This means that the population is always increasing. In fact, 

as P(t) increases, Equation 1 shows that dP/dt becomes 

larger. 

In other words, the growth rate increases as the population 

increases.

Let’s try to think of a solution of Equation 1. This equation 

asks us to find a function whose derivative is a constant 

multiple of itself.
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Models of Population Growth

We know that exponential functions have that property. In 

fact, if we let P(t) = Cekt, then

P(t) = C(kekt) = k(Cekt) = kP(t) 

Thus any exponential function of the form P(t) = Cekt is a 

solution of Equation 1. 

Allowing C to vary through all the 

real numbers, we get the family of 

solutions P(t) = Cekt whose graphs 

are shown in Figure 1.

Figure 1

The family of solutions of dP/dt = kP
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Models of Population Growth

But populations have only positive values and so we are 

interested only in the solutions with C > 0. And we are 

probably concerned only with values of t greater than the 

initial time t = 0. Figure 2 shows the physically meaningful 

solutions.

Figure 2

The family of solutions of P(t) = Ce kt with C > 0 and t  0
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Models of Population Growth

Putting t = 0, we get P(0) = Cek(0) = C, so the constant C

turns out to be the initial population, P(0).

Equation 1 is appropriate for modeling population growth 

under ideal conditions, but we have to recognize that a more 

realistic model must reflect the fact that a given environment 

has limited resources. 

Many populations start by increasing in an exponential 

manner, but the population levels off when it approaches its 

carrying capacity M (or decreases toward M if it ever 

exceeds M).
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Models of Population Growth

For a model to take into account both trends, we make two

assumptions:

▪ if P is small (Initially, the growth rate is 

proportional to P.)

▪ if P > M (P decreases if it ever exceeds M.)

A simple expression that incorporates both assumptions is 

given by the equation
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Models of Population Growth

Notice that if P is small compared with M, then P/M is close 

to 0 and so dP/dt  kP. If P > M, then 1 – P/M is negative 

and so dP/dt < 0.

Equation 2 is called the logistic differential equation and was 

proposed by the Dutch mathematical biologist 

Pierre-François Verhulst in the 1840s as a model for world 

population growth.

We first observe that the constant functions P(t) = 0 and 

P(t) = M are solutions because, in either case, one of the 

factors on the right side of Equation 2 is zero. These two 

constant solutions are called equilibrium solutions.
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Models of Population Growth

If the initial population P(0) lies between 0 and M, then the 

right side of Equation 2 is positive, so dP/dt > 0 and the 

population increases. But if the population exceeds the 

carrying capacity (P > M), then 1 – P/M is negative, so 

dP/dt < 0 and the population decreases. 

Notice that, in either case, if the population approaches the 

carrying capacity (P → M), then dP/dt → 0, which means the 

population levels off.
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Models of Population Growth

So we expect that the solutions of the logistic differential 

equation have graphs that look something like the ones in 

Figure 3. 

Notice that the graphs move away from the equilibrium 

solution P = 0 and move toward the equilibrium solution 

P = M.

Figure 3

Solutions of the logistic equation
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A Model for the Motion of a Spring
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A Model for the Motion of a Spring

Let’s now look at an example of a model from the physical 

sciences. We consider the motion of an object with mass m 

at the end of a vertical spring (as in Figure 4).

Figure 4
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A Model for the Motion of a Spring

We have discussed Hooke’s Law, which says that if the 

spring is stretched (or compressed) x units from its natural 

length, then it exerts a force that is proportional to x:

restoring force = –kx

where k is a positive constant (called the spring constant). If 

we ignore any external resisting forces (due to air resistance 

or friction) then, by Newton’s Second Law (force equals 

mass times acceleration), we have
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A Model for the Motion of a Spring

This is an example of what is called a second-order 

differential equation because it involves second derivatives. 

Let’s see what we can guess about the form of the solution  

directly from the equation. We can rewrite Equation 3 in the 

form

which says that the second derivative of x is proportional to 

x but has the opposite sign.
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General Differential Equations
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General Differential Equations

In general, a differential equation is an equation that 

contains an unknown function and one or more of its 

derivatives. 

The order of a differential equation is the order of the 

highest derivative that occurs in the equation. Thus 

Equations 1 and 2 are first-order equations and Equation 3 

is a second-order equation. 

In all three of those equations the independent variable is 

called t and represents time, but in general the independent 

variable doesn’t have to represent time. 
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General Differential Equations

For example, when we consider the differential equation

y = xy

it is understood that y is an unknown function of x.

A function f is called a solution of a differential equation if 

the equation is satisfied when y = f(x) and its derivatives are 

substituted into the equation. Thus f is a solution of 

Equation 4 if

f (x) = xf(x)

for all values of x in some interval.



22

General Differential Equations

When we are asked to solve a differential equation we are 

expected to find all possible solutions of the equation. We 

have already solved some particularly simple differential 

equations, namely, those of the form

y = f(x) 

For instance, we know that the general solution of the 

differential equation

y = x3

is given by

where C is an arbitrary constant.
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Example 1 – Verifying Solutions of a Differential Equation

Show that every member of the family of functions

is a solution of the differential equation .
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Example 1 – Solution

We use the Quotient Rule to differentiate the expression

for y:
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Example 1 – Solution

The right side of the differential equation becomes

Therefore, for every value of c, the given function is a 

solution of the differential equation.

cont’d
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General Differential Equations

When applying differential equations, we are usually not as 

interested in finding a family of solutions (the general 

solution) as we are in finding a solution that satisfies some 

additional requirement. 

In many physical problems we need to find the particular 

solution that satisfies a condition of the form y(t0) = y0. 

This is called an initial condition, and the problem of 

finding a solution of the differential equation that satisfies the 

initial condition is called an initial-value problem.


