

Differential Equations

7.3 Separable Equations

Separable Equations

A separable equation is a first-order differential equation in which the expression for $d y / d x$ can be factored as a function of x times a function of y.

In other words, it can be written in the form

$$
\frac{d y}{d x}=g(x) f(y)
$$

The name separable comes from the fact that the expression on the right side can be "separated" into a function of x and a function of y.

Separable Equations

Equivalently, if $f(y) \neq 0$, we could write

$$
1 \quad \frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

where $h(y)=1 / f(y)$.

To solve this equation we rewrite it in the differential form

$$
h(y) d y=g(x) d x
$$

so that all y 's are on one side of the equation and all x 's are on the other side.

Separable Equations

Then we integrate both sides of the equation:

$$
2 \quad \int h(y) d y=\int g(x) d x
$$

Equation 2 defines y implicitly as a function of x. In some cases we may be able to solve for y in terms of x.

Separable Equations

We use the Chain Rule to justify this procedure: If h and g satisfy (2), then

$$
\frac{d}{d x}\left(\int h(y) d y\right)=\frac{d}{d x}\left(\int g(x) d x\right)
$$

so $\frac{d}{d y}\left(\int h(y) d y\right) \frac{d y}{d x}=g(x)$
and $h(y) \frac{d y}{d x}=g(x)$
Thus Equation 1 is satisfied.

Example 1 - Solving a Separable Equation

(a) Solve the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$.
(b) Find the solution of this equation that satisfies the initial condition $y(0)=2$.

Solution:

(a) We write the equation in terms of differentials and integrate both sides:

$$
\begin{aligned}
y^{2} d y & =x^{2} d x \\
\int y^{2} d y & =\int x^{2} d x
\end{aligned}
$$

Example 1 - Solution

$$
\frac{1}{3} y^{3}=\frac{1}{3} x^{3}+C
$$

where C is an arbitrary constant. (We could have used a constant C_{1} on the left side and another constant C_{2} on the right side. But then we could combine these constants by writing $C=C_{2}-C_{1}$.)

Solving for y, we get

$$
y=\sqrt[3]{x^{3}+3 C}
$$

Example 1 - Solution

We could leave the solution like this or we could write it in the form

$$
y=\sqrt[3]{x^{3}+K}
$$

where $K=3 C$. (Since C is an arbitrary constant, so is K.)
(b) If we put $x=0$ in the general solution in part (a), we get

$$
y(0)=\sqrt[3]{K}
$$

To satisfy the initial condition $y(0)=2$, we must have $\sqrt[3]{K}=2$ and so $K=8$.

Thus the solution of the initial-value problem is

$$
y=\sqrt[3]{x^{3}+8}
$$

Orthogonal Trajectories

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family orthogonally, that is, at right angles (see Figure 7).

Figure 7

Orthogonal Trajectories

For instance, each member of the family $y=m x$ of straight lines through the origin is an orthogonal trajectory of the family $x^{2}+y^{2}=r^{2}$ of concentric circles with center the origin (see Figure 8). We say that the two families are orthogonal trajectories of each other.

Figure 8

Example 5

Find the orthogonal trajectories of the family of curves $x=k y^{2}$, where is k an arbitrary constant.

Solution:

The curves $x=k y^{2}$ form a family of parabolas whose axis of symmetry is the x-axis.

The first step is to find a single differential equation that is satisfied by all members of the family.

Example 5 - Solution

If we differentiate $x=k y^{2}$, we get

$$
1=2 k y \frac{d y}{d x} \quad \text { or } \quad \frac{d y}{d x}=\frac{1}{2 k y}
$$

This differential equation depends on k, but we need an equation that is valid for all values of k simultaneously.

To eliminate k we note that, from the equation of the given general parabola $x=k y^{2}$, we have $k=x / y^{2}$ and so the differential equation can be written as
or

$$
\frac{d y}{d x}=\frac{1}{2 k y}=\frac{1}{2 \frac{x}{y^{2}} y}
$$

$$
\frac{d y}{d x}=\frac{y}{2 x}
$$

Example 5 - Solution

This means that the slope of the tangent line at any point (x, y) on one of the parabolas is $y^{\prime}=y /(2 x)$.

On an orthogonal trajectory the slope of the tangent line must be the negative reciprocal of this slope.

Therefore the orthogonal trajectories must satisfy the differential equation

$$
\frac{d y}{d x}=-\frac{2 x}{y}
$$

This differential equation is separable, and we solve it as follows:

$$
\int y d y=-\int 2 x d x
$$

Example 5 - Solution

$$
\begin{aligned}
& \frac{y^{2}}{2}=-x^{2}+C \\
& 4 \quad x^{2}+\frac{y^{2}}{2}=C
\end{aligned}
$$

where C is an arbitrary positive constant.

Thus the orthogonal trajectories are the family of ellipses given by Equation 4 and sketched in Figure 9.

Figure 9

Mixing Problems

Mixing Problems

A typical mixing problem involves a tank of fixed capacity filled with a thoroughly mixed solution of some substance, such as salt.

A solution of a given concentration enters the tank at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate, which may differ from the entering rate.

If $y(t)$ denotes the amount of substance in the tank at time t, then $y^{\prime}(t)$ is the rate at which the substance is being added minus the rate at which it is being removed.

Mixing Problems

The mathematical description of this situation often leads to a first-order separable differential equation.

We can use the same type of reasoning to model a variety of phenomena: chemical reactions, discharge of pollutants into a lake, injection of a drug into the bloodstream.

Example 6

A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after half an hour?

Solution:

Let $y(t)$ be the amount of salt (in kilograms) after t minutes.

We are given that $y(0)=20$ and we want to find $y(30)$. We do this by finding a differential equation satisfied by $y(t)$.

Example 6 - Solution

Note that $d y / d t$ is the rate of change of the amount of salt, so

$$
5 \quad \frac{d y}{d t}=(\text { rate in })-(\text { rate out })
$$

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which salt leaves the tank.

We have

$$
\text { rate in }=\left(0.03 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\min }\right)=0.75 \frac{\mathrm{~kg}}{\min }
$$

The tank always contains 5000 L of liquid, so the concentration at time t is $y(t) / 5000$ (measured in kilograms per liter).

Example 6 - Solution

Since the brine flows out at a rate of $25 \mathrm{~L} / \mathrm{min}$, we have

$$
\text { rate out }=\left(\frac{y(t)}{5000} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\min }\right)=\frac{y(t)}{200} \frac{\mathrm{~kg}}{\min }
$$

Thus, from Equation 5, we get

$$
\frac{d y}{d t}=0.75-\frac{y(t)}{200}=\frac{150-y(t)}{200}
$$

Solving this separable differential equation, we obtain

$$
\begin{gathered}
\int \frac{d y}{150-y}=\int \frac{d t}{200} \\
-\ln |150-y|=\frac{t}{200}+C
\end{gathered}
$$

Example 6 - Solution

Since $y(0)=20$, we have $-\ln 130=C$, so

$$
-\ln |150-y|=\frac{t}{200}-\ln 130
$$

Therefore

$$
|150-y|=130 e^{-t 200}
$$

Since $y(t)$ is continuous and $y(0)=20$ and the right side is never 0 , we deduce that $150-y(t)$ is always positive.

Example 6 - Solution

Thus $|150-y|=150-y$ and so

$$
y(t)=150-130 e^{-t 200}
$$

The amount of salt after 30 min is

$$
\begin{aligned}
y(30) & =150-130 e^{-30 / 200} \\
& \approx 38.1 \mathrm{~kg}
\end{aligned}
$$

