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Exponential Growth and Decay

One of the models for population growth that we considered 

was based on the assumption that the population grows at a 

rate proportional to the size of the population:

Is that a reasonable assumption? Suppose we have a 

population (of bacteria, for instance) with size P = 1000 and 

at a certain time it is growing at a rate of P = 300 bacteria 

per hour. 
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Exponential Growth and Decay

Now let’s take another 1000 bacteria of the same type and 

put them with the first population. Each half of the new 

population was growing at a rate of 300 bacteria per hour.

We would expect the total population of 2000 to increase at 

a rate of 600 bacteria per hour initially (provided there’s 

enough room and nutrition). 

So if we double the size, we double the growth rate. In 

general, it seems reasonable that the growth rate should be 

proportional to the size.
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Exponential Growth and Decay

The same assumption applies in other situations as well. In 

nuclear physics, the mass of a radioactive substance 

decays at a rate proportional to the mass. 

In chemistry, the rate of a unimolecular first-order reaction is 

proportional to the concentration of the substance. 

In finance, the value of a savings account with continuously 

compounded interest increases at a rate proportional to that 

value.
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Exponential Growth and Decay

In general, if y(t) is the value of a quantity y at time t and if 

the rate of change of y with respect to t is proportional to its 

size y(t) at any time, then

where k is a constant. Equation 1 is sometimes called the 

law of natural growth (if k > 0) or the law of natural decay 

(if k < 0). Because it is a separable differential equation we 

can solve it.
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Exponential Growth and Decay

 =  k dt

ln |y | = kt + C

|y | = ekt+C = eCekt

y = Aekt

where A (= eC or 0) is an arbitrary constant. 

To see the significance of the constant A, we observe that

y(0) = Aek0 = A

Therefore A is the initial value of the function.
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Exponential Growth and Decay

Because Equation 1 occurs so frequently in nature, we 

summarize the following.
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Population Growth
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Population Growth

What is the significance of the proportionality constant k? In 

the context of population growth, we can write

or

The quantity

is the growth rate divided by the population size; it is called 

the relative growth rate.
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Population Growth

According to (3), instead of saying “the growth rate is 

proportional to population size” we could say “the relative 

growth rate is constant.” 

Then (2) says that a population with constant relative growth 

rate must grow exponentially. 

Notice that the relative growth rate k appears as the 

coefficient of t in the exponential function y0e
kt. 
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Population Growth

For instance, if

and t is measured in years, then the relative growth rate is   

k = 0.02 and the population grows at a relative rate of 2% 

per year. If the population at time 0 is P0, then the 

expression for the population is

P(t) = P0e
0.02t
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Example 1 – Modeling World Population with the Law of Natural Growth

Assuming that the growth rate is proportional to population 

size, use the data in Table 1 to model the population of the 

world in the 20th century. What is the relative growth rate? 

How well does the model fit the data?

Table 1
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Example 1 – Solution

We measure the time t in years and let t = 0 in the year 

1900. We measure the population P(t) in millions of people. 

Then the initial condition is P(0) = 1650. We are assuming 

that the growth rate is proportional to population size, so the 

initial-value problem is

= kP               P(0) = 1650

From (2) we know that the solution is

P(t) = 1650ekt
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Example 1 – Solution

One way to estimate the relative growth rate k is to use the 

fact that the population in 1950 was 2560 million. 

Therefore

P(50) = 1650ek(50)

= 2560

We solve this equation for k:

cont’d
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Example 1 – Solution

Thus the relative growth rate is about 0.88% per year and 

the model becomes

P(t) = 1650e0.0087846t

cont’d
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Example 1 – Solution

Table 2 and Figure 1 allow us to compare the predictions of 

this model with the actual data.

cont’d

Figure 1

A possible model for world population growth

Table 2
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Example 1 – Solution

You can see that the predictions become quite inaccurate 

after about 60 years.

Looking at Figure 1, we might think that we would get a 

better model by using the given population for 1970, instead 

of 1950, to estimate k. Then

P(70) = 1650e70k

= 3710

cont’d
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Example 1 – Solution

The estimate for the relative growth rate is now 1.16% per 

year and the model is

P(t) = 1650e0.0115751t

Figure 2 illustrates the second model. This exponential 

model is more accurate after 1970 but less accurate before 

1950.

cont’d

Figure 2

Another model for world population growth
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Radioactive Decay
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Radioactive Decay

Radioactive substances decay by spontaneously emitting 

radiation. If m(t) is the mass remaining from an initial mass 

m0 of the substance after time t, then the relative decay rate

has been found experimentally to be constant. (Since dm/dt

is negative, the relative decay rate is positive.) It follows that

where k is a negative constant. 
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Radioactive Decay

In other words, radioactive substances decay at a rate 

proportional to the remaining mass. This means that we can 

use (2) to show that the mass decays exponentially:

m(t) = m0e
kt

Physicists express the rate of decay in terms of half-life, the 

time required for half of any given quantity to decay.
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Example 3

The half-life of radium-226 is 1590 years.

(a) A sample of radium-226 has a mass of 100 mg. Find a   

formula for the mass of           that remains after t years.

(b) Find the mass after 1000 years correct to the nearest 

milligram.

(c) When will the mass be reduced to 30 mg?

Solution:

(a)Let m(t) be the mass of radium-226 (in milligrams) that 

remains after t years. 

Then dm/dt = km and y(0) = 100, so (2) gives

m(t) = m(0)ekt

= 100ekt



24

Example 3 – Solution

In order to determine the value of k, we use the fact that 

y(1590) =   (100). 

Thus

100e1590k = 50    so   e1590k =

and              1590k = ln

= –ln 2

k =

Therefore        m(t) = 100e–(ln 2)t/1590

cont’d
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Example 3 – Solution

We could use the fact that eln 2 = 2 to write the expression 

for m(t) in the alternative form

m(t) = 100  2–t/1590

(b) The mass after 1000 years is

m(1000) = 100e–(ln 2)1000/1590

 65 mg

(c) We want to find the value of t such that m(t) = 30, that is,

100e–(ln 2)t/1590 = 30    or   e–(ln 2)t/1590 = 0.3

cont’d
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Example 3 – Solution

We solve this equation for t by taking the natural logarithm of 

both sides:

Thus

cont’d
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Newton’s Law of Cooling
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Newton’s Law of Cooling

Newton’s Law of Cooling states that the rate of cooling of an 

object is proportional to the temperature difference between 

the object and its surroundings, provided that this difference 

is not too large. (This law also applies to warming.) 

If we let T(t) be the temperature of the object at time t and

Ts be the temperature of the surroundings, then we can 

formulate Newton’s Law of Cooling as a differential 

equation: 

where k is a constant.
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Newton’s Law of Cooling

We could solve this equation as a separable differential 

equation, but an easier method is to make the change of 

variable y(t) = T(t) – Ts. 

Because Ts is constant, we have y(t) = T(t) and so the 

equation becomes

We can then use (2) to find an expression for y, from which 

we can find T.



30

Example 4 – Using Newton’s Law of Cooling to Predict Temperatures

A bottle of soda pop at room temperature (72F) is placed in 

a refrigerator where the temperature is 44F. After half an 

hour the soda pop has cooled to 61F.

(a) What is the temperature of the soda pop after another  

half hour?

(b) How long does it take for the soda pop to cool to 50F?

Solution:

(a) Let T(t) be the temperature of the soda after t minutes. 

The surrounding temperature is Ts = 44F, so Newton’s 

Law of Cooling states that

= k(T – 44)
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Example 4 – Solution

If we let y = T – 44, then y(0) = T(0) – 44 = 72 – 44 = 28, 

so y is a solution of the initial-value problem

= ky                 y(0) = 28

and by (2) we have

y(t) = y(0)ekt

= 28ekt

We are given that T(30) = 61, so y(30) = 61 – 44 = 17 and

28e30k = 17

e30k =

cont’d
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Example 4 – Solution

Taking logarithms, we have

k =

 –0.01663

Thus

y(t) = 28e–0.01663t

T(t) = 44 + 28e–0.01663t

T(60) = 44 + 28e–0.01663(60)

 54.3

So after another half hour the pop has cooled to about     

54F.

cont’d
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Example 4 – Solution

(b) We have T(t) = 50 when

44 + 28e–0.01663t = 50

e–0.01663t =

t =

 92.6

The pop cools to 50F after about 1 hour 33 minutes.

cont’d
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Continuously Compounded Interest
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Example 5

If $1000 is invested at 6% interest, compounded annually, 

then after 1 year the investment is worth 

$1000(1.06) = $1060, after 2 years it’s worth   

$[1000(1.06)]1.06 = $1123.60, and after t years it’s worth 

$1000(1.06)t. 

In general, if an amount A0 is invested at an interest rate r   

(r = 0.06 in this example), then after t years it’s worth       

A0(1 + r)t. Usually, however, interest is compounded more 

frequently, say, n times a year. 
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Example 5

Then in each compounding period the interest rate is r/n and 

there are nt compounding periods in t years, so the value of 

the investment is

For instance, after 3 years at 6% interest a $1000 

investment will be worth

$1000(1.06)3 = $1191.02     with annual compounding

$1000(1.03)6 = $1194.05     with semiannual compounding

$1000(1.015)12 = $1195.62    with quarterly compounding

cont’d
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Example 5

$1000(1.005)36 = $1196.68   with monthly compounding

= $1197.20   with daily compounding

You can see that the interest paid increases as the number 

of compounding periods (n) increases. 

If we let n → , then we will be compounding the interest 

continuously and the value of the investment will be

cont’d
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Example 5

But the limit in this expression is equal to the number e. 

(where m = n/r)

cont’d
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Example 5

So with continuous compounding of interest at interest rate 

r, the amount after t years is

A(t) = A0e
rt

If we differentiate this equation, we get

= rA0e
rt = rA(t)

which says that, with continuous compounding of interest, 

the rate of increase of an investment is proportional to its 

size.

cont’d
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Example 5

Returning to the example of $1000 invested for 3 years at 

6% interest, we see that with continuous compounding of 

interest the value of the investment will be

A(3) = $1000e(0.06)3

= $1000e0.18

= $1197.22

Notice how close this is to the amount we calculated for 

daily compounding, $1197.20. But the amount is easier to 

compute if we use continuous compounding.

cont’d


