
Differential Equations 7



The Logistic Equation7.5



3

The Logistic Model
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The Logistic Model

As we have discussed, a population often increases 

exponentially in its early stages but levels off eventually and 

approaches its carrying capacity because of limited 

resources. 

If P(t) is the size of the population at time t, we assume that 

if P is small

This says that the growth rate is initially close to being 

proportional to size. 

In other words, the relative growth rate is almost constant 

when the population is small.
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The Logistic Model

But we also want to reflect the fact that the relative growth 

rate decreases as the population P increases and becomes 

negative if P ever exceeds its carrying capacity M, the 

maximum population that the environment is capable of 

sustaining in the long run.

The simplest expression for the relative growth rate that 

incorporates these assumptions is
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The Logistic Model

Multiplying by P, we obtain the model for population growth 

known as the logistic differential equation:

Notice from Equation 1 that if P is small compared with M, 

then P/M is close to 0 and so dP/dt  kP. However, if 

P → M (the population approaches its carrying capacity), 

then P/M → 1, so dP/dt → 0. 
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The Logistic Model

We can deduce information about whether solutions 

increase or decrease directly from Equation 1.

If the population P lies between 0 and M, then the right side 

of the equation is positive, so dP/dt > 0 and the population

increases. 

But if the population exceeds the carrying capacity (P > M),  

then 1 – P/M is negative, so dP/dt < 0 and the population 

decreases.
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Direction Fields
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Example 1 – What a Direction Field Tells us about Solutions of the Logistic Equation

Draw a direction field for the logistic equation with k = 0.08

and carrying capacity M = 1000. What can you deduce about 

the solutions?

Solution:

In this case the logistic differential equation is

A direction field for this equation is 

shown in Figure 1. We show only 

the first quadrant because negative 

populations aren’t meaningful and 

we are interested only in what 

happens after t = 0.

Figure 1

Direction field for the logistic

equation in Example 1



10

Example 1 – Solution

The logistic equation is autonomous (dP/dt depends only 

on P, not on t), so the slopes are the same along any 

horizontal line. 

As expected, the slopes are positive for 0 < P < 1000 and 

negative for P > 1000.

The slopes are small when P is close to 0 or 1000 (the 

carrying capacity). 

Notice that the solutions move away from the equilibrium 

solution P = 0 and move toward the equilibrium solution 

P = 1000.

cont’d



11

Example 1 – Solution

In Figure 2 we use the direction field to sketch solution 

curves with initial populations P(0) = 100, P(0) = 400, and 

P(0) = 1300. 

Notice that solution curves that start below P = 1000 are 

increasing and those that start above P = 1000 are 

decreasing. 

cont’d

Figure 2

Solution curves for the logistic equation in Example 1
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Example 1 – Solution

The slopes are greatest when P  500 and therefore the 

solution curves that start below P = 1000 have inflection 

points when P  500. 

In fact we can prove that all solution curves that start below 

P = 500 have an inflection point when P is exactly 500.

cont’d
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Euler’s Method
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Euler’s Method

Let’s use Euler’s method to obtain numerical estimates for 

solutions of the logistic differential equation at specific times.
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Example 2

Use Euler’s method with step sizes 20, 10, 5, 1, and 0.1 to 

estimate the population sizes P(40) and P(80), where P is 

the solution of the initial-value problem



16

Example 2 – Solution

With step size h = 20, t0 = 0, P0 = 100, and

we get,

t = 20: P1 = 100 + 20F(0, 100) = 244

t = 40: P2 = 244 + 20F(20, 244)  539.14

t = 60: P3 = 539.14 + 20F(40, 539.14)  936.69

t = 80: P4 = 936.69 + 20F(60, 936.69)  1031.57

Thus our estimates for the population sizes at times t = 40 

and t = 80 are

P(40)  539 P(80)  1032
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Example 2 – Solution

For smaller step sizes we need to program a calculator or 

computer. The table gives the results.

cont’d
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Euler’s Method

Figure 3 shows a graph of the Euler approximations with step 

sizes h = 10 and h = 1. We see that the Euler approximation 

with h = 1 looks very much like the lower solution curve that 

we drew using a direction field in Figure 2.

Figure 2

Solution curves for the logistic

equation in Example 1

Euler approximations of the

solution curve in Example 2

Figure 3
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The Analytic Solution
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The Analytic Solution

The logistic equation (1) is separable and so we can solve it 

explicitly. Since

we have

To evaluate the integral on the left side, we write
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The Analytic Solution

Using partial fractions, we get

This enables us to rewrite Equation 2:
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The Analytic Solution

where A = e–c. Solving Equation 3 for P, we get

so



23

The Analytic Solution

We find the value of A by putting t = 0 in Equation 3. If t = 0, 

then P = P0(the initial population), so

Thus the solution to the logistic equation is
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The Analytic Solution

Using the expression for P(t) in Equation 4, we see that

which is to be expected.
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Example 3 – An Explicit Solution of the Logistic Equation

Write the solution of the initial value problem

and use it to find the population sizes P(40) and P(80). At 

what time does the population reach 900?
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Example 3 – Solution

The differential equation is a logistic equation with k = 0.08, 

carrying capacity M = 1000, and initial population P0 = 100. 

So Equation 4 gives the population at time t as

Thus
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Example 3 – Solution

So the population sizes when t = 40 and 80 are

The population reaches 900 when

Solving this equation for t, we get

cont’d
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Example 3 – Solution

So the population reaches 900 when t is approximately 55.

As a check on our work, we

graph the population curve in

Figure 4 and observe where

it intersects the line P = 900. 

The cursor indicates that t ≈ 55.

cont’d

Figure 4
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Comparison of the Natural Growth and 
Logistic Models
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Comparison of the Natural Growth and Logistic Models

In the 1930s the biologist G. F. Gause conducted an 

experiment with the protozoan Paramecium and used a 

logistic equation to model his data. 

The table gives his daily count of the population of protozoa. 

He estimated the initial relative growth rate to be 0.7944 and 

the carrying capacity to be 64.
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Example 4

Find the exponential and logistic models for Gause’s data. 

Compare the predicted values with the observed values and 

comment on the fit.

Solution:

Given the relative growth rate k = 0.7944 and the initial 

population P0 = 2, the exponential model is

P(t) = P0e
kt = 2e0.7944t
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Example 4 – Solution

Gause used the same value of k for his logistic model. [This 

is reasonable because P0 = 2 is small compared with the 

carrying capacity (M = 64). The equation

shows that the value of k for the logistic model is very close 

to the value for the exponential model.]

cont’d



33

Example 4 – Solution

Then the solution of the logistic equation in Equation 4 gives

where

So

cont’d
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Example 4 – Solution

We use these equations to calculate the predicted values 

(rounded to the nearest integer) and compare them in the 

following table.

cont’d
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Example 4 – Solution

We notice from the table and from the graph in Figure 5 that 

for the first three or four days the exponential model gives 

results comparable to those of the more sophisticated 

logistic model. 

For t  5, however, the 

exponential model is 

hopelessly inaccurate, 

but the logistic model 

fits the observations 

reasonably well.

cont’d

Figure 5

The exponential and logistic

models for the Paramecium data
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Other Models for Population Growth
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Other Models for Population Growth

The Law of Natural Growth and the logistic differential 

equation are not the only equations that have been 

proposed to model population growth.

Two of the other models are modifications of the logistic 

model. The differential equation

has been used to model populations that are subject to 

“harvesting” of one sort or another. (Think of a population of 

fish being caught at a constant rate.)
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Other Models for Population Growth

For some species there is a minimum population level m 

below which the species tends to become extinct. (Adults 

may not be able to find suitable mates.) 

Such populations have been modeled by the differential 

equation

where the extra factor, 1 – m/P, takes into account the 

consequences of a sparse population.


