

Infinite Sequences and Series
8.1 Sequences

Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

The number a_{1} is called the first term, a_{2} is the second term, and in general a_{n} is the nth term. We will deal exclusively with infinite sequences and so each term a_{n} will have a successor a_{n+1}.

Notice that for every positive integer n there is a corresponding number a_{n} and so a sequence can be defined as a function whose domain is the set of positive integers.

Sequences

But we usually write a_{n} instead of the function notation $f(n)$ for the value of the function at the number n.

Notation: The sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is also denoted by

$$
\left\{a_{n}\right\} \quad \text { or } \quad\left\{a_{n}\right\}_{n=1}^{\infty}
$$

Example 1 - Describing Sequences

Some sequences can be defined by giving a formula for the nth term. In the following examples we give three descriptions of the sequence: one by using the preceding notation, another by using the defining formula, and a third by writing out the terms of the sequence. Notice that n doesn't have to start at 1.
(a) $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} a_{n}=\frac{n}{n+1} \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{n}{n+1}, \ldots\right\}$
(b) $\left\{\frac{(-1)^{n}(n+1)}{3^{n}}\right\} \quad a_{n}=\frac{(-1)^{n}(n+1)}{3^{n}}$

$$
\left\{-\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \frac{5}{81}, \ldots, \frac{(-1)^{n}(n+1)}{3^{n}}, \ldots\right\}
$$

Example 1

(c) $\{\sqrt{n-3}\}_{n=3}^{\infty} \quad a_{n}=\sqrt{n-3}, n \geqslant 3$
$\{0,1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n-3}, \ldots\}$
(d) $\left\{\cos \frac{n \pi}{6}\right\}_{n=0}^{\infty} \quad a_{n}=\cos \frac{n \pi}{6}, n \geqslant 0$

$$
\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \ldots, \cos \frac{n \pi}{6}, \ldots\right\}
$$

Sequences

A sequence such as the one in Example 1(a), $a_{n}=n /(n+1)$, can be pictured either by plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Figure 2.

Figure 1

Figure 2

Sequences

Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

$$
\left(1, a_{1}\right) \quad\left(2, a_{2}\right) \quad\left(3, a_{3}\right) \quad \ldots \quad\left(n, a_{n}\right) \quad \ldots
$$

From Figure 1 or Figure 2 it appears that the terms of the sequence $a_{n}=n /(n+1)$ are approaching 1 as n becomes large. In fact, the difference

$$
1-\frac{n}{n+1}=\frac{1}{n+1}
$$

can be made as small as we like by taking n sufficiently large.

Sequences

We indicate this by writing

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

In general, the notation

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

means that the terms of the sequence $\left\{a_{n}\right\}$ approach L as n becomes large.

Sequences

Notice that the following definition of the limit of a sequence is very similar to the definition of a limit of a function at infinity.

1 Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Sequences

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the limit L.

Figure 3
Graphs of two sequences with $\lim _{n \rightarrow \infty} a_{n}=L$

You will see that the only difference between $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{x \rightarrow \infty} f(x)=L$ is that n is required to be an integer.

Sequences

Thus we have the following theorem, which is illustrated by Figure 4.

2 Theorem If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Figure 4

Sequences

In particular, since we know that $\lim _{x \rightarrow \infty}\left(1 / x^{\prime}\right)=0$ when $r>0$, we have

$$
\text { (3) } \quad \lim _{n \rightarrow \infty} \frac{1}{n^{r}}=0 \quad \text { if } r>0
$$

If a_{n} becomes large as n becomes large, we use the notation

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

In this case the sequence $\left\{a_{n}\right\}$ is divergent, but in a special way. We say that $\left\{a_{n}\right\}$ diverges to ∞.

The Limit Laws also hold for the limits of sequences and their proofs are similar.

Sequences

Limit Laws for Sequences

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}=c \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

Sequences

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 5).

Squeeze Theorem for Sequences

$$
\text { If } a_{n} \leqslant b_{n} \leqslant c_{n} \text { for } n \geqslant n_{0} \text { and } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \text {, then } \lim _{n \rightarrow \infty} b_{n}=L \text {. }
$$

Figure 5

Sequences

Another useful fact about limits of sequences is given by the following theorem, which follows from the Squeeze Theorem because $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$.

$$
4 \text { Theorem } \quad \text { If } \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \text {, then } \lim _{n \rightarrow \infty} a_{n}=0 \text {. }
$$

The following theorem says that if we apply a continuous function to the terms of a convergent sequence, the result is also convergent.

5 Theorem If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function f is continuous at L, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Example 10 - Limit of a Geometric Sequence

For what values of r is the sequence $\left\{r^{m}\right\}$ convergent?

Solution:

We know that $\lim _{x \rightarrow \infty} a^{x}=\infty$ for $a>1$ and $\lim _{x \rightarrow \infty} a^{x}=0$ for $0<a<1$. Therefore, putting $a=r$ and using Theorem 2, we have

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}\infty & \text { if } r>1 \\ 0 & \text { if } 0<r<1\end{cases}
$$

For the cases $r=1$ and $r=0$ we have

$$
\lim _{n \rightarrow \infty} 1^{n}=\lim _{n \rightarrow \infty} 1=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} 0^{n}=\lim _{n \rightarrow \infty} 0=0
$$

If $-1<r<0$, then $0<|r|<1$, so

$$
\lim _{n \rightarrow \infty}\left|r^{n}\right|=\lim _{n \rightarrow \infty}|r|^{n}=0
$$

and therefore $\lim _{n \rightarrow \infty} r^{m}=0$ by Theorem 4.

Example 10 - Solution

If $r \leq-1$, then $\left\{r^{m}\right\}$ diverges. Figure 9 shows the graphs for various values of r. (The case $r=-1$ is shown in Figure 6.)

Figure 6

Figure 9
The sequence $a_{n}=r^{m}$

Sequences

The results of Example 10 are summarized as follows.

7 The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leqslant 1$ and divergent for all other values of r.

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$, that is, $a_{1}<a_{2}<a_{3}<\cdots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$. A sequence is monotonic if it is either increasing or decreasing.

Sequences

Definition A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

It is bounded below if there is a number m such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

For instance, the sequence $a_{n}=n$ is bounded below ($a_{n}>0$) but not above. The sequence $a_{n}=n /(n+1)$ is bounded because $0<a_{n}<1$ for all n.

Sequences

We know that not every bounded sequence is convergent [for instance, the sequence $a_{n}=(-1)^{n}$ satisfies $-1 \leq a_{n} \leq 1$ but is divergent,] and not every monotonic sequence is convergent ($a_{n}=n \rightarrow \infty$).

But if a sequence is both bounded and monotonic, then it must be convergent.

Sequences

This fact is stated without proof as Theorem 8, but intuitively you can understand why it is true by looking at Figure 10.

8 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

If $\left\{a_{n}\right\}$ is increasing and $a_{n} \leq M$ for all n, then the terms are forced to crowd together and approach some number L.

