

Infinite Sequences and Series

A **sequence** can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

Notice that for every positive integer *n* there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers.

But we usually write a_n instead of the function notation f(n) for the value of the function at the number n.

Notation: The sequence $\{a_1, a_2, a_3, \ldots\}$ is also denoted by

 $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$

Example 1 – Describing Sequences

Some sequences can be defined by giving a formula for the *n*th term. In the following examples we give three descriptions of the sequence: one by using the preceding notation, another by using the defining formula, and a third by writing out the terms of the sequence. Notice that *n* doesn't have to start at 1.

(a)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} a_n = \frac{n}{n+1} \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots\right\}$$

(b) $\left\{\frac{(-1)^n(n+1)}{3^n}\right\} a_n = \frac{(-1)^n(n+1)}{3^n}$
 $\left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots\right\}$

Example 1

(c)
$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, n \ge 3$

$$\{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}$$

(d)
$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$
 $a_n = \cos\frac{n\pi}{6}, n \ge 0$

$$\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos\frac{n\pi}{6}, \dots\right\}$$

cont'd

A sequence such as the one in Example 1(a), $a_n = n/(n + 1)$, can be pictured either by plotting its terms on a number line, as in Figure 1, or by plotting its graph, as in Figure 2.

Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

 $(1, a_1)$ $(2, a_2)$ $(3, a_3)$... (n, a_n) ...

From Figure 1 or Figure 2 it appears that the terms of the sequence $a_n = n/(n + 1)$ are approaching 1 as *n* becomes large. In fact, the difference

$$1 - \frac{n}{n+1} = \frac{1}{n+1}$$

can be made as small as we like by taking *n* sufficiently large.

We indicate this by writing

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

In general, the notation

$$\lim_{n\to\infty}a_n=L$$

means that the terms of the sequence $\{a_n\}$ approach *L* as *n* becomes large.

Notice that the following definition of the limit of a sequence is very similar to the definition of a limit of a function at infinity.

Definition A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to *L* as we like by taking *n* sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the limit *L*.

Graphs of two sequences with $\lim_{n \to \infty} a_n = L$

You will see that the only difference between $\lim_{n\to\infty} a_n = L$ and $\lim_{x\to\infty} f(x) = L$ is that *n* is required to be an integer.

Thus we have the following theorem, which is illustrated by Figure 4.

2 Theorem If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when *n* is an integer, then $\lim_{n\to\infty} a_n = L$.

In particular, since we know that $\lim_{x\to\infty}(1/x^r) = 0$ when r > 0, we have

3
$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \quad \text{if } r > 0$$

If a_n becomes large as n becomes large, we use the notation

$$\lim_{n\to\infty}a_n=\infty$$

In this case the sequence $\{a_n\}$ is divergent, but in a special way. We say that $\{a_n\}$ diverges to ∞ .

The Limit Laws also hold for the limits of sequences and their proofs are similar.

Limit Laws for Sequences

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and *c* is a constant, then $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$ $\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$ $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$ $\lim c = c$ $n \rightarrow \infty$ $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad \text{if } \lim_{n \to \infty} b_n \neq 0$ $\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ if } p > 0 \text{ and } a_n > 0$

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 5).

Squeeze Theorem for Sequences

If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

The sequence $\{b_n\}$ is squeezed between the sequences $\{a_n\}$ and $\{c_n\}$.

Another useful fact about limits of sequences is given by the following theorem, which follows from the Squeeze Theorem because $-|a_n| \le a_n \le |a_n|$.

4 Theorem	If $\lim a_n =$	0, then $\lim a_n = 0$.
	$n \rightarrow \infty$	$n \rightarrow \infty$

The following theorem says that if we apply a continuous function to the terms of a convergent sequence, the result is also convergent.

5 Theorem If
$$\lim_{n \to \infty} a_n = L$$
 and the function f is continuous at L , then
 $\lim_{n \to \infty} f(a_n) = f(L)$

Example 10 – Limit of a Geometric Sequence

For what values of *r* is the sequence $\{r^n\}$ convergent?

Solution:

We know that $\lim_{x\to\infty} a^x = \infty$ for a > 1 and $\lim_{x\to\infty} a^x = 0$ for 0 < a < 1. Therefore, putting a = r and using Theorem 2, we have $\lim_{n\to\infty} r^n = \begin{cases} \infty & \text{if } r > 1 \\ 0 & \text{if } 0 < r < 1 \end{cases}$

For the cases r = 1 and r = 0 we have

 $\lim_{n \to \infty} 1^n = \lim_{n \to \infty} 1 = 1 \qquad \text{and} \qquad \lim_{n \to \infty} 0^n = \lim_{n \to \infty} 0 = 0$

If -1 < r < 0, then 0 < |r| < 1, so

$$\lim_{n\to\infty}|r^n|=\lim_{n\to\infty}|r|^n=0$$

and therefore $\lim_{n\to\infty} r^n = 0$ by Theorem 4.

Example 10 – Solution

If $r \le -1$, then $\{r^n\}$ diverges. Figure 9 shows the graphs for various values of *r*. (The case r = -1 is shown in Figure 6.)

cont'd

The results of Example 10 are summarized as follows.

7 The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^{n} = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

Definition A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

 $a_n \leq M$ for all $n \geq 1$

It is **bounded below** if there is a number *m* such that

 $m \leq a_n$ for all $n \geq 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

For instance, the sequence $a_n = n$ is bounded below ($a_n > 0$) but not above. The sequence $a_n = n/(n + 1)$ is bounded because $0 < a_n < 1$ for all n.

We know that not every bounded sequence is convergent [for instance, the sequence $a_n = (-1)^n$ satisfies $-1 \le a_n \le 1$ but is divergent,] and not every monotonic sequence is convergent ($a_n = n \rightarrow \infty$).

But if a sequence is both bounded *and* monotonic, then it must be convergent.

This fact is stated without proof as Theorem 8, but intuitively you can understand why it is true by looking at Figure 10.

8 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

If $\{a_n\}$ is increasing and $a_n \le M$ for all *n*, then the terms are forced to crowd together and approach some number *L*.

