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Sequences

A sequence can be thought of as a list of numbers written in 

a definite order:

a1, a2, a3, a4, . . . , an, . . .

The number a1 is called the first term, a2 is the second term, 

and in general an is the nth term. We will deal exclusively 

with infinite sequences and so each term an will have a 

successor an+1.

Notice that for every positive integer n there is a 

corresponding number an and so a sequence can be defined 

as a function whose domain is the set of positive integers. 
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Sequences

But we usually write an instead of the function notation f(n)

for the value of the function at the number n.

Notation: The sequence {a1, a2, a3, . . .} is also denoted by

{an} or



5

Example 1 – Describing Sequences

Some sequences can be defined by giving a formula for the 

nth term. In the following examples we give three 

descriptions of the sequence: one by using the preceding 

notation, another by using the defining formula, and a third 

by writing out the terms of the sequence. Notice that n 

doesn’t have to start at 1.
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Example 1
cont’d
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Sequences

A sequence such as the one in Example 1(a), an = n/(n + 1), 

can be pictured either by plotting its terms on a number line, 

as in Figure 1, or by plotting its graph, as in Figure 2.

Figure 2Figure 1
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Sequences

Note that, since a sequence is a function whose domain is 

the set of positive integers, its graph consists of isolated 

points with coordinates

(1, a1)     (2, a2)      (3, a3)     . . .     (n, an) . . .

From Figure 1 or Figure 2 it appears that the terms of the 

sequence an = n/(n + 1) are approaching 1 as n becomes 

large. In fact, the difference 

can be made as small as we like by taking n sufficiently 

large. 
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Sequences

We indicate this by writing

In general, the notation

means that the terms of the sequence {an} approach L as n

becomes large. 
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Sequences

Notice that the following definition of the limit of a sequence 

is very similar to the definition of a limit of a function at 

infinity. 
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Sequences

Figure 3 illustrates Definition 1 by showing the graphs of two 

sequences that have the limit L.

You will see that the only difference between limn→ an = L

and limx→ f(x)= L is that n is required to be an integer. 

Graphs of two sequences with

Figure 3
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Sequences

Thus we have the following theorem, which is illustrated by 

Figure 4.

Figure 4
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Sequences

In particular, since we know that limx→ (1/xr) = 0 when r > 0, 

we have

if r > 0

If an becomes large as n becomes large, we use the notation

In this case the sequence {an} is divergent, but in a special 

way. We say that {an} diverges to     .

The Limit Laws also hold for the limits of sequences and 

their proofs are similar.
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Sequences
Limit Laws for Sequences



15

Sequences

The Squeeze Theorem can also be adapted for sequences 

as follows (see Figure 5).

Squeeze Theorem for Sequences

The sequence {bn} is squeezed between the sequences {an} and {cn}.

Figure 5
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Sequences

Another useful fact about limits of sequences is given by the 

following theorem, which follows from the Squeeze Theorem 

because –|an|  an  |an |.

The following theorem says that if we apply a continuous 

function to the terms of a convergent sequence, the result is 

also convergent.
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Example 10 – Limit of a Geometric Sequence

For what values of r is the sequence {rn} convergent?

Solution:

We know that limx→ ax =     for a > 1 and limx→ ax = 0 for 

0 < a < 1. Therefore, putting a = r and using Theorem 2, we 

have

For the cases r = 1 and r = 0 we have

and

If –1 < r < 0, then 0 < | r | < 1, so

and therefore limn→ rn = 0 by Theorem 4.
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Example 10 – Solution

If r  –1, then {rn} diverges. Figure 9 shows the graphs for 

various values of r. (The case r = –1 is shown in Figure 6.)  

cont’d

Figure 9

The sequence an = rn

Figure 6
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Sequences

The results of Example 10 are summarized as follows.
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Sequences

For instance, the sequence an = n is bounded below (an > 0) 

but not above. The sequence an = n/(n + 1) is bounded 

because 0 < an < 1 for all n.
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Sequences

We know that not every bounded sequence is convergent 

[for instance, the sequence an = (–1)n satisfies –1  an  1 

but is divergent,] and not every monotonic sequence is 

convergent (an = n → ).

But if a sequence is both bounded and monotonic, then it 

must be convergent.
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Sequences

This fact is stated without proof as Theorem 8, but intuitively 

you can understand why it is true by looking at Figure 10.

If {an} is increasing and an  M 

for all n, then the terms are forced 

to crowd together and approach 

some number L.

Figure 10


