

Infinite Sequences and Series
8.2 Series

Series

What do we mean when we express a number as an infinite decimal? For instance, what does it mean to write

$$
\pi=3.14159265358979323846264338327950288 \ldots
$$

The convention behind our decimal notation is that any number can be written as an infinite sum. Here it means that

$$
\pi=3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{5}{10^{4}}+\frac{9}{10^{5}}+\frac{2}{10^{6}}+\frac{6}{10^{7}}+\frac{5}{10^{8}}+\cdots
$$

where the three dots (\cdots) indicate that the sum continues forever, and the more terms we add, the closer we get to the actual value of π.

Series

In general, if we try to add the terms of an infinite sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { or } \quad \sum a_{n}
$$

Series

It would be impossible to find a finite sum for the series

$$
1+2+3+4+5+\cdots+n+\cdots
$$

because if we start adding the terms we get the cumulative sums $1,3,6,10,15,21, \ldots$ and, after the nth term, we get $n(n+1) / 2$, which becomes very large as n increases.

However, if we start to add the terms of the series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots+\frac{1}{2^{n}}+\cdots
$$

we get $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \frac{63}{64}, \ldots, 1-1 / 2^{n}, \ldots$.

Series

The table shows that as we add more and more terms, these partial sums become closer and closer to 1 .

n	Sum of first n terms
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.99999997

Series

In fact, by adding sufficiently many terms of the series we can make the partial sums as close as we like to 1 .

So it seems reasonable to say that the sum of this infinite series is 1 and to write

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots+\frac{1}{2^{n}}+\cdots=1
$$

We use a similar idea to determine whether or not a general series (1) has a sum.

Series

We consider the partial sums

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& s_{4}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

and, in general,

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

These partial sums form a new sequence $\left\{s_{n}\right\}$, which may or may not have a limit.

Series

If $\lim _{n \rightarrow \infty} s_{n}=s$ exists (as a finite number), then, as in the preceding example, we call it the sum of the infinite series Σa_{n}.

2 Definition Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote its nth partial sum:

$$
s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum a_{n}$ is called convergent and we write

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=s \quad \text { or } \quad \sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is called divergent.

Series

Thus the sum of a series is the limit of the sequence of partial sums.

So when we write $\sum_{n=1}^{\infty} a_{n}=s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.

Notice that

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

Example 1

An important example of an infinite series is the geometric series

$$
a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1} \quad a \neq 0
$$

Each term is obtained from the preceding one by multiplying it by the common ratio r.

If $r=1$, then $s_{n}=a+a+\cdots+a=n a \rightarrow \pm \infty$.

Since $\lim _{n \rightarrow \infty} s_{n}$ doesn't exist, the geometric series diverges in this case.

Example 1

If $r \neq 1$, we have

$$
s_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}
$$

and

$$
r s_{n}=a r+a r^{2}+\cdots+a r^{n-1}+a r^{n}
$$

Subtracting these equations, we get

$$
s_{n}-r s_{n}=a-a r^{n}
$$

$$
s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

Example 1

If $-1<r<1$, we know that as $r^{n} \rightarrow 0$ as $n \rightarrow \infty$,
so

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}-\frac{a}{1-r} \lim _{n \rightarrow \infty} r^{n}=\frac{a}{1-r}
$$

Thus when $|r|<1$ the geometric series is convergent and its sum is $a /(1-r)$.

If $r \leq-1$ or $r>1$, the sequence $\left\{r^{n}\right\}$ is divergent and so, by Equation 3, $\lim _{n \rightarrow \infty} s_{n}$ does not exist.

Therefore the geometric series diverges in those cases.

Series

We summarize the results of Example 1 as follows.

4 The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geqslant 1$, the geometric series is divergent.

Example 7

Show that the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

is divergent.

Solution:

For this particular series it's convenient to consider the partial sums $s_{2}, s_{4}, s_{8}, s_{16}, s_{32}, \ldots$ and show that they become large.

$$
\begin{aligned}
& s_{2}=1+\frac{1}{2} \\
& s_{4}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)=1+\frac{2}{2}
\end{aligned}
$$

Example 7 - Solution

$$
\begin{aligned}
s_{8} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{3}{2} \\
s_{16} & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{9}+\cdots+\frac{1}{16}\right) \\
& >1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\cdots+\frac{1}{8}\right)+\left(\frac{1}{16}+\cdots+\frac{1}{16}\right) \\
& =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=1+\frac{4}{2}
\end{aligned}
$$

Example 7 - Solution

Similarly, $s_{32}>1+\frac{5}{2}, s_{64}>1+\frac{6}{2}$, and in general

$$
s_{2^{n}}>1+\frac{n}{2}
$$

This shows that $s_{2^{n}} \rightarrow \infty$ as $n \rightarrow \infty$ and so $\left\{s_{n}\right\}$ is divergent.

Therefore the harmonic series diverges.

Series

$$
6 \text { Theorem If the series } \sum_{n=1}^{\infty} a_{n} \text { is convergent, then } \lim _{n \rightarrow \infty} a_{n}=0 \text {. }
$$

The converse of Theorem 6 is not true in general.
If $\lim _{n \rightarrow \infty} a_{n}=0$, we cannot conclude that Σa_{n} is convergent.

Series

7 The Test for Divergence If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent, then it is convergent, and so $\lim _{n \rightarrow \infty} a_{n}=0$.

Series

8 Theorem If Σa_{n} and Σb_{n} are convergent series, then so are the series $\Sigma c a_{n}$ (where c is a constant), $\Sigma\left(a_{n}+b_{n}\right)$, and $\Sigma\left(a_{n}-b_{n}\right)$, and
(i) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(iii) $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$

