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The Integral and Comparison Tests; Estimating Sums

In general, it is difficult to find the exact sum of a series. We 

were able to accomplish this for geometric series and the 

series  1/[n(n + 1)] because in each of those cases we 

could find a simple formula for the nth partial sum sn.

But usually it isn’t easy to compute limn→ sn. 

Therefore in this section we develop tests that enable us to 

determine whether a series is convergent or divergent 

without explicitly finding its sum.
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Testing with an Integral
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Testing with an Integral

Let’s investigate the series whose terms are the reciprocals 

of the squares of the positive integers:

There’s no simple formula for 

the sum sn of the first n terms, 

but the computer-generated 

table of values given to the right

suggests that the partial sums 

are approaching a number 

near 1.64 as n → and so it 

looks as if the series is convergent.
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Testing with an Integral

We can confirm this impression with a geometric argument. 

Figure 1 shows the curve y = 1/x2 and rectangles that lie 

below the curve. 

The base of each rectangle is an interval of length 1; the 

height is equal to the value of the function y = 1/x2 at the 

right endpoint of the interval.

Figure 1
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Testing with an Integral

So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the 

remaining rectangles is smaller than the area under the 

curve y = 1/x2 for x  1, which is the value of the 

integral

The improper integral is convergent and has value 1. So the 

picture shows that all the partial sums are less than
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Testing with an Integral

Thus the partial sums are bounded and the series 

converges. The sum of the series (the limit of the partial 

sums) is also less than 2:

Now let’s look at the series
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Testing with an Integral

The table of values of sn suggests that the partial sums 

aren’t approaching a finite number, so we suspect that the 

given series may be divergent.
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Testing with an Integral

Again we use a picture for confirmation. Figure 2 shows the 

curve                 but this time we use rectangles whose tops 

lie above the curve.

The base of each rectangle is an interval of length 1. The 

height is equal to the value of the function at the 

left endpoint of the interval.

Figure 2



11

Testing with an Integral

So the sum of the areas of all the rectangles is

This total area is greater than the area under the curve 

for x  1, which is equal to the integral 

But we know that this improper integral is divergent. So the 

sum of the series must be infinite, that is, the series is 

divergent.
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Testing with an Integral

The same sort of geometric reasoning that we used for 

these two series can be used to prove the following test.
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Example 1 – Using the Integral Test

Determine whether the series              converges or 

diverges.

Solution:

The function f(x) = (ln x)/x is positive and continuous for 

x > 1 because the logarithm function is continuous. 

But it is not obvious whether or not f is decreasing, so we 

compute its derivative:
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Example 1 – Solution

Thus f '(x) < 0 when ln x > 1, that is, x > e. It follows that f is 

decreasing when x > e and so we can apply the Integral 

Test:

Since this improper integral is divergent, the series  (ln n)/n

is also divergent by the Integral Test.
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Testing with an Integral

The series is called the p-series.

For instance, the series

is convergent because it is a p-series with p = 3 > 1. But the 

series

is divergent because it is a p-series with
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Testing by Comparing



17

Testing by Comparing

The series

reminds us of the series which is a geometric 

series with a =    and r =    and is therefore convergent. 

Because the series (2) is so similar to a convergent series, 

we have the feeling that it too must be convergent. Indeed, it 

is. The inequality

shows that our given series (2) has smaller terms than those 

of the geometric series and therefore all its partial sums are 

also smaller than 1 (the sum of the geometric series).



18

Testing by Comparing

This means that its partial sums form a bounded increasing 

sequence, which is convergent. 

It also follows that the sum of the series is less than the sum 

of the geometric series:

Similar reasoning can be used to prove the following test, 

which applies only to series whose terms are positive.
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Testing by Comparing

The first part says that if we have a series whose terms are 

smaller than those of a known convergent series, then our 

series is also convergent.

The second part says that if we start with a series whose 

terms are larger than those of a known divergent series, 

then it too is divergent.
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Testing by Comparing

Standard Series for Use with the Comparison Test

In using the Comparison Test we must, of course, have 

some known series  bn for the purpose of comparison. 

Most of the time we use one of these series:

▪ A p-series [ 1/np converges if p > 1 and diverges if p  1; 

see (1)]

▪ A geometric series [ arn–1 converges if | r | < 1 and 

diverges if | r |  1]
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Example 3 – Using the Comparison Test

Determine whether the series                             converges 

or diverges.

Solution:

For large n the dominant term in the denominator is 2n2, so 

we compare the given series with the series  5/(2n2).

Observe that

because the left side has a bigger denominator. (In the 

notation of the Comparison Test, an is the left side and bn is 

the right side.)
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Example 3 – Solution

We know that

is convergent because it’s a constant times a p-series with 

p = 2 > 1.

Therefore

is convergent by part (a) of the Comparison Test.

cont’d
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Testing by Comparing

Consider the series

The inequality

is useless as far as the Comparison Test is concerned 

because  bn =  is convergent and an > bn.

Nonetheless, we have the feeling that  1/(2n – 1) ought to 

be convergent because it is very similar to the convergent 

geometric series  .
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Testing by Comparing

In such cases the following test can be used.
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Estimating the Sum of a Series
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Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show 

that a series  an is convergent and we now want to find an 

approximation to the sum s of the series.

Of course, any partial sum sn is an approximation to s 

because limn→ sn = s. But how good is such an 

approximation? To find out, we need to estimate the size of 

the remainder

Rn = s – sn = an+1 + an+2 + an+3 +

The remainder Rn is the error made when sn, the sum of the 

first n terms, is used as an approximation to the total sum.
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Estimating the Sum of a Series

We use the same notation and ideas as in the Integral Test, 

assuming that f is decreasing on [n,    ). Comparing the 

areas of the rectangles with the area under y = f(x) for x > n 

in Figure 3, we see that

Similarly, we see from Figure 4 that Figure 3

Figure 4
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Estimating the Sum of a Series

So we have proved the following error estimate.
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Example 6 – Estimating the Sum of a Series

(a) Approximate the sum of the series  1/n3 by using the 

sum of the first 10 terms. Estimate the error involved in 

this approximation. 

(b) How many terms are required to ensure that the sum is 

accurate to within 0.0005?

Solution:

In both parts (a) and (b) we need to know With 

f(x) = 1/x3, which satisfies the conditions of the Integral Test, 

we have
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Example 6 – Solution

(a) Approximating the sum of the series by the 10th partial 

sum, we have

According to the remainder estimate in (3), we have

So the size of the error is at most 0.005.

cont’d
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Example 6 – Solution

(b) Accuracy to within 0.0005 means that we have to find a 

value of n such that Rn  0.0005. Since

we want

Solving this inequality, we get

We need 32 terms to ensure accuracy to within 0.0005.

cont’d
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Estimating the Sum of a Series

If we add sn to each side of the inequalities in (3), we get

because sn + Rn = s. The inequalities in (4) give a lower 

bound and an upper bound for s. 

They provide a more accurate approximation to the sum of 

the series than the partial sum sn does.


