

Infinite Sequences and Series

8.4 Other Convergence Tests

Alternating Series

Alternating Series

An alternating series is a series whose terms are alternately positive and negative. Here are two examples:

$$
\begin{gathered}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n} \\
-\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\frac{4}{5}-\frac{5}{6}+\frac{6}{7}-\cdots=\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}
\end{gathered}
$$

We see from these examples that the nth term of an alternating series is of the form

$$
a_{n}=(-1)^{n-1} b_{n} \quad \text { or } \quad a_{n}=(-1)^{n} b_{n}
$$

where b_{n} is a positive number. (\ln fact, $b_{n}=\left|a_{n}\right|$.)

Alternating Series

The following test says that if the terms of an alternating series decrease to 0 in absolute value, then the series converges.

The Alternating Series Test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\cdots \quad\left(b_{n}>0\right)
$$

satisfies

$$
\begin{aligned}
& \text { (i) } b_{n+1} \leqslant b_{n} \quad \text { for all } n \\
& \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

then the series is convergent.

Example 1 - Using the Alternating Series Test

The alternating harmonic series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}
$$

satisfies
(i) $b_{n+1}<b_{n} \quad$ because $\frac{1}{n+1}<\frac{1}{n}$
(ii) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
so the series is convergent by the Alternating Series Test.

Alternating Series

The error involved in using the partial sum s_{n} as an approximation to the total sum s is the remainder $R_{n}=s-s_{n}$.

The next theorem says that for series that satisfy the conditions of the Alternating Series Test, the size of the error is smaller than b_{n+1}, which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies

$$
\text { (i) } b_{n+1} \leqslant b_{n} \quad \text { and } \quad \text { (ii) } \lim _{n \rightarrow \infty} b_{n}=0
$$

then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leqslant b_{n+1}
$$

Absolute Convergence

Absolute Convergence

Given any series Σa_{n}, we can consider the corresponding series

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|+\cdots
$$

whose terms are the absolute values of the terms of the original series.

Definition A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\Sigma\left|a_{n}\right|$ is convergent.

Notice that if Σa_{n} is a series with positive terms, then $\left|a_{n}\right|=a_{n}$ and so absolute convergence is the same as convergence.

Example 5 - Determining Absolute Convergence

The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots
$$

is absolutely convergent because

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
$$

is a convergent p-series $(p=2)$.

Example 6 - A Series that is Convergent but not Absolutely Convergent
We know that the alternating harmonic series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

is convergent (see Example 1), but it is not absolutely convergent because the corresponding series of absolute values is

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

which is the harmonic series (p-series with $p=1$) and is therefore divergent.

Absolute Convergence

Example 6 shows that it is possible for a series to be convergent but not absolutely convergent.

However, Theorem 1 shows that absolute convergence implies convergence.

1 Theorem If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

To see why Theorem 1 is true, observe that the inequality

$$
0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|
$$

is true because $\mid a_{n} /$ is either a_{n} or $-a_{n}$.

Absolute Convergence

If Σa_{n} is absolutely convergent, then $\Sigma\left|a_{n}\right|$ is convergent, so
$\Sigma 2\left|a_{n}\right|$ is convergent.

Therefore, by the Comparison Test, $\Sigma\left(a_{n}+\left|a_{n}\right|\right)$ is convergent. Then

$$
\Sigma a_{n}=\Sigma\left(a_{n}+\left|a_{n}\right|\right)-\Sigma\left|a_{n}\right|
$$

is the difference of two convergent series and is therefore convergent.

The Ratio Test

The Ratio Test

The following test is very useful in determining whether a given series is absolutely convergent.

The Ratio Test
(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of Σa_{n}.

Example 8 - Using the Ratio Test

Test the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ for absolute convergence.
Solution:
We use the Ratio Test with $a_{n}=(-1)^{n} n^{3} / 3^{n}$:

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}}{\frac{(-1)^{n} n^{3}}{3^{n}}}\right| \\
& =\frac{(n+1)^{3}}{3^{n+1}} \cdot \frac{3^{n}}{n^{3}}
\end{aligned}
$$

Example 8 - Solution

$$
\begin{aligned}
& =\frac{1}{3}\left(\frac{n+1}{n}\right)^{3} \\
& =\frac{1}{3}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{3}<1
\end{aligned}
$$

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.

