

Infinite Sequences and Series

We start by supposing that *f* is any function that can be represented by a power series

1
$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + c_4(x-a)^4 + \cdots |x-a| < \mathbf{R}$$

Let's try to determine what the coefficients c_n must be in terms of f.

To begin, notice that if we put x = a in Equation 1, then all terms after the first one are 0 and we get

$$f(a)=c_0$$

We can differentiate the series in Equation 1 term by term:

2
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \cdots |x-a| < \mathbf{R}$$

and substitution of x = a in Equation 2 gives

$$f'(a)=c_1$$

Now we differentiate both sides of Equation 2 and obtain

3
$$f'(x) = 2c_2 + 2 \cdot 3c_3(x-a) + 3 \cdot 4c_4(x-a)^2 + \cdots |x-a| < \mathbf{R}$$

Again we put x = a in Equation 3. The result is

$$f''(a) = 2c_2$$

Let's apply the procedure one more time. Differentiation of the series in Equation 3 gives

4
$$f'''(x) = 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4(x-a) + 3 \cdot 4 \cdot 5c_5(x-a)^2 + \cdots |x-a| < \mathbf{R}$$

and substitution of x = a in Equation 4 gives

$$f'''(a) = 2 \cdot 3c_3 = 3!c_3$$

By now you can see the pattern. If we continue to differentiate and substitute x = a, we obtain

$$f^{(n)}(a) = 2 \cdot 3 \cdot 4 \cdot \cdots \cdot nc_n = n!c_n$$

Solving this equation for the *n*th coefficient c_n , we get

$$c_n = \frac{f^{(n)}(a)}{n!}$$

This formula remains valid even for n = 0 if we adopt the conventions that 0! = 1 and $f^{(0)} = f$. Thus we have proved the following theorem.

5 Theorem If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n \qquad |x - a| < R$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

Substituting this formula for c_n back into the series, we see that *if f* has a power series expansion at *a*, then it must be of the following form.

6
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$

The series in Equation 6 is called the **Taylor series of the** function *f* at *a* (or about *a* or centered at *a*).

For the special case a = 0 the Taylor series becomes

7
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

This case arises frequently enough that it is given the special name **Maclaurin series**.

Example 1 – Maclaurin Series for the Exponential Function

Find the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence.

Solution:

If $f(x) = e^x$, then $f^{(n)}(x) = e^x$, so $f^{(n)}(0) = e^0 = 1$ for all *n*. Therefore the Taylor series for *f* at 0 (that is, the Maclaurin series) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Example 1 – Solution

To find the radius of convergence we let $a_n = x^n/n!$. Then

$$\frac{a_{n+1}}{a_n} = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 < 1$$

so, by the Ratio Test, the series converges for all x and the radius of convergence is $R = \infty$.

The conclusion we can draw from Theorem 5 and Example 1 is that *if* e^x has a power series expansion at 0, then

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

So how can we determine whether *e^x does* have a power series representation?

Let's investigate the more general question: Under what circumstances is a function equal to the sum of its Taylor series? In other words, if *f* has derivatives of all orders, when is it true that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

As with any convergent series, this means that f(x) is the limit of the sequence of partial sums. In the case of the Taylor series, the partial sums are

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x - a)^i$$

= $f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$

Notice that T_n is a polynomial of degree *n* called the *n*th-degree Taylor polynomial of *f* at *a*.

For instance, for the exponential function $f(x) = e^x$, the result of Example 1 shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with n = 1, 2, and 3 are

$$T_1(x) = 1 + x$$
 $T_2(x) = 1 + x + \frac{x^2}{2!}$ $T_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$

The graphs of the exponential function and these three Taylor polynomials are drawn in Figure 1.

Figure 1

As *n* increases, $T_n(x)$ appears to approach e^x in Figure 1. This suggests that e^x is equal to the sum of its Taylor series.

In general, f(x) is the sum of its Taylor series if

$$f(x) = \lim_{n \to \infty} T_n(x)$$

If we let

$$R_n(x) = f(x) - T_n(x) \qquad \text{so that} \qquad f(x) = T_n(x) + R_n(x)$$

then $R_n(x)$ is called the **remainder** of the Taylor series. If we can somehow show that $\lim_{n\to\infty} R_n(x) = 0$, then it follows that

$$\lim_{n \to \infty} T_n(x) = \lim_{n \to \infty} \left[f(x) - R_n(x) \right] = f(x) - \lim_{n \to \infty} R_n(x) = f(x)$$

We have therefore proved the following.

8 Theorem If $f(x) = T_n(x) + R_n(x)$, where T_n is the *n*th-degree Taylor polynomial of f at a and

$$\lim_{n\to\infty}R_n(x)=0$$

for |x - a| < R, then *f* is equal to the sum of its Taylor series on the interval |x - a| < R.

In trying to show that $\lim_{n\to\infty} R_n(x) = 0$ for a specific function *f*, we usually use the following fact.

9 Taylor's Inequality If $|f^{(n+1)}(x)| \le M$ for $|x - a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

To see why this is true for n = 1, we assume that $|f''(x)| \le M$. In particular, we have $f''(x) \le M$, so for $a \le x \le a + d$ we have

$$\int_a^x f''(t) \, dt \le \int_a^x M \, dt$$

An antiderivative of *f*'' is *f*', so by the Evaluation Theorem, we have

$$f'(x) - f'(a) \le M(x - a)$$
 or $f'(x) \le f'(a) + M(x - a)$

Thus

$$\int_{a}^{x} f'(t) dt \leq \int_{a}^{x} [f'(a) + M(t - a)] dt$$
$$f(x) - f(a) \leq f'(a)(x - a) + M \frac{(x - a)^{2}}{2}$$
$$f(x) - f(a) - f'(a)(x - a) \leq \frac{M}{2} (x - a)^{2}$$

But
$$R_1(x) = f(x) - T_1(x) = f(x) - f(a) - f'(a)(x - a)$$
. So

$$R_1(x) \le \frac{M}{2} (x-a)^2$$

A similar argument, using $f''(x) \ge -M$, shows that

$$R_1(x) \ge -\frac{M}{2}(x-a)^2$$

So $|R_1(x)| \leq \frac{M}{2} |x-a|^2$

Although we have assumed that x > a, similar calculations show that this inequality is also true for x < a.

This proves Taylor's Inequality for the case where n = 1. The result for any *n* is proved in a similar way by integrating n + 1 times.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0 \qquad \text{for every real number } x$$

This is true because we know from Example 1 that the series $\sum x^n/n!$ converges for all *x* and so its *n*th term approaches 0.

Example 2

Prove that e^x is equal to the sum of its Maclaurin series.

Solution:

If $f(x) = e^x$, then $f^{(n+1)}(x) = e^x$ for all n. If d is any positive number and $|x| \le d$, then $|f^{(n+1)}(x)| = e^x \le e^d$.

So Taylor's Inequality, with a = 0 and $M = e^d$, says that

$$|R_n(x)| \le \frac{e^d}{(n+1)!} |x|^{n+1} \quad \text{for } |x| \le d$$

Example 2 – Solution

Notice that the same constant $M = e^d$ works for every value of *n*. But, from Equation 10, we have

$$\lim_{n \to \infty} \frac{e^d}{(n+1)!} |x|^{n+1} = e^d \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$$

It follows from the Squeeze Theorem that $\lim_{n\to\infty} |R_n(x)| = 0$ and therefore $\lim_{n\to\infty} R_n(x) = 0$ for all values of *x*. By Theorem 8, e^x is equal to the sum of its Maclaurin series, that is,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for all x

11

In particular, if we put x = 1 in Equation 11, we obtain the following expression for the number *e* as a sum of an infinite series:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Example 8

Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

Solution:

Arranging our work in columns, we have

$$f(x) = (1 + x)^{k}$$

$$f(0) = 1$$

$$f'(x) = k(1 + x)^{k-1}$$

$$f'(0) = k$$

$$f''(x) = k(k-1)(1 + x)^{k-2}$$

$$f''(0) = k(k-1)$$

$$f'''(x) = k(k-1)(k-2)(1 + x)^{k-3}$$

$$f'''(0) = k(k-1)(k-2)$$

 $f^{(n)}(x) = k(k-1)\cdots(k-n+1)(1+x)^{k-n} \quad f^{(n)}(0) = k(k-1)\cdots(k-n+1)$

Example 8 – Solution

Therefore the Maclaurin series of $f(x) = (1 + x)^k$ is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n$$

This series is called the **binomial series**.

Example 8 – Solution

If its *n*th term is a_n , then

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{k(k-1)\cdots(k-n+1)(k-n)x^{n+1}}{(n+1)!}\cdot\frac{n!}{k(k-1)\cdots(k-n+1)x^n}\right|$$
$$= \frac{|k-n|}{n+1}|x| = \frac{\left|1-\frac{k}{n}\right|}{1+\frac{1}{n}}|x| \to |x| \quad \text{as } n \to \infty$$

Thus, by the Ratio Test, the binomial series converges if |x| < 1 and diverges if |x| > 1.

The traditional notation for the coefficients in the binomial series is $\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$

and these numbers are called the binomial coefficients.

The following theorem states that $(1 + x)^k$ is equal to the sum of its Maclaurin series.

It is possible to prove this by showing that the remainder term $R_n(x)$ approaches 0, but that turns out to be quite difficult.

17 The Binomial Series If k is any real number and |x| < 1, then $(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$

Although the binomial series always converges when |x| < 1, the question of whether or not it converges at the endpoints, ± 1 , depends on the value of *k*.

It turns out that the series converges at 1 if $-1 < k \le 0$ and at both endpoints if $k \ge 0$.

Notice that if *k* is a positive integer and n > k, then the expression for $\binom{k}{n}$ contains a factor (k - k), so $\binom{k}{n} = 0$ for n > k.

This means that the series terminates and reduces to the ordinary Binomial Theorem when k is a positive integer.

We collect in the following table, for future reference, some important Maclaurin series that we have derived in this section and the preceding one.

Table 1

Important Maclaurin Series and Their Radii of Convergence

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$
 $R = 1$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $R = \infty$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad R = \infty$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad R = \infty$$

$$\tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$R = 1$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \qquad R = 1$$

$$(1+x)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} x^{n} = 1 + kx + \frac{k(k-1)}{2!} x^{2} + \frac{k(k-1)(k-2)}{3!} x^{3} + \cdots \quad R = 1$$

Multiplication and Division of Power Series

Example 13 – Finding Maclaurin Series by Multiplication and Division

Find the first three nonzero terms in the Maclaurin series for (a) $e^x \sin x$ and (b) tan x.

Solution:

(a) Using the Maclaurin series for e^x and sin x in Table 1, we have

$$e^x \sin x = \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) \left(x - \frac{x^3}{3!} + \cdots\right)$$

Example 13 – Solution

We multiply these expressions, collecting like terms just as for polynomials:

$$\begin{array}{rcl} 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots \\ \times & x & -\frac{1}{6}x^3 + \cdots \\ & x + x^2 + \frac{1}{2}x^3 + \frac{1}{6}x^4 + \cdots \\ + & -\frac{1}{6}x^3 - \frac{1}{6}x^4 - \cdots \\ & x + x^2 + \frac{1}{3}x^3 + \cdots \end{array}$$

Example 13 – Solution

Thus

$$e^x \sin x = x + x^2 + \frac{1}{3}x^3 + \cdots$$

(b) Using the Maclaurin series in Table 1, we have

$$\tan x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots}$$

Example 13 – Solution

We use a procedure like long division:

$$x + \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + \cdots$$

$$1 - \frac{1}{2}x^{2} + \frac{1}{24}x^{4} - \cdots)x - \frac{1}{6}x^{3} + \frac{1}{120}x^{5} - \cdots$$

$$x - \frac{1}{2}x^{3} + \frac{1}{24}x^{5} - \cdots$$

$$\frac{1}{3}x^{3} - \frac{1}{30}x^{5} + \cdots$$

$$\frac{1}{3}x^{3} - \frac{1}{6}x^{5} + \cdots$$

$$\frac{2}{15}x^{5} + \cdots$$

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots$$

Thus