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Applications of Taylor Polynomials

In this section we explore two types of applications of Taylor  

polynomials. First we look at how they are used to 

approximate functions––computer scientists like them 

because polynomials are the simplest of functions.

Then we investigate how physicists and engineers use them 

in such fields as relativity, optics, blackbody radiation, 

electric dipoles, and building highways across a desert.
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Approximating Functions by 
Polynomials
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Approximating Functions by Polynomials

Suppose that f(x) is equal to the sum of its Taylor series 

at a:

We have introduced the notation Tn(x) for the nth partial sum 

of this series and called it the nth-degree Taylor polynomial 

of f at a. Thus
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Approximating Functions by Polynomials

Since f is the sum of its Taylor series, we know that           

Tn(x) → f(x) as n → and so Tn can be used as an 

approximation to f: f(x)  Tn(x).

Notice that the first-degree Taylor polynomial

T1(x) = f(a) + f (a)(x – a)

is the same as the linearization of f at a.

Notice also that T1 and its derivative have the same values 

at a that f and f  have. In general, it can be shown that the 

derivatives of Tn at a agree with those of f up to and 

including derivatives of order n.
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Approximating Functions by Polynomials

To illustrate these ideas let’s take another look at the graphs 

of y = ex and its first few Taylor polynomials, as shown in 

Figure 1.

Figure 1
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Approximating Functions by Polynomials

The graph of T1 is the tangent line to y = ex at (0, 1); this 

tangent line is the best linear approximation to ex near (0, 1).

The graph of T2 is the parabola y = 1 + x + x2/2, and the 

graph of T3 is the cubic curve y = 1 + x + x2/2 + x3/6, which is 

a closer fit to the exponential curve y = ex than T2. 

The next Taylor polynomial T4 would be an even better 

approximation, and so on.
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Approximating Functions by Polynomials

The values in the table give a numerical demonstration of 

the convergence of the Taylor polynomials Tn(x) to the 

function y = ex.
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Approximating Functions by Polynomials

We see that when x = 0.2 the convergence is very rapid, but 

when x = 3 it is somewhat slower. In fact, the farther x is 

from 0, the more slowly Tn(x) converges to ex.

When using a Taylor polynomial Tn to approximate a 

function f, we have to ask the questions: How good an 

approximation is it? How large should we take n to be in 

order to achieve a desired accuracy? To answer these 

questions we need to look at the absolute value of the 

remainder:

|Rn(x) | = | f(x) – Tn(x)| 
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Approximating Functions by Polynomials

There are three possible methods for estimating the size of 

the error:

1. If a graphing device is available, we can use it to graph       

|Rn(x) | and thereby estimate the error.

2. If the series happens to be an alternating series, we can 

use the Alternating Series Estimation Theorem.

3. In all cases we can use Taylor’s Inequality, which says 

that if | f (n+1)(x) |  M, then
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Example 1 – Approximating a Root Function by a Quadratic Function

(a) Approximate the function                      by a Taylor 

polynomial of degree 2 at a = 8.

(b) How accurate is this approximation when 7  x  9?

Solution:

(a) 



13

Example 1 – Solution

Thus the second-degree Taylor polynomial is

The desired approximation is

cont’d
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Example 1 – Solution

(b) The Taylor series is not alternating when x < 8, so we 
can’t use the Alternating Series Estimation Theorem in 
this example. 

But we can use Taylor’s Inequality with n = 2 and a = 8:

where | f'''(x) |  M. 

Because x  7, we have x8/3  78/3 and so

Therefore we can take M = 0.0021.

cont’d
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Example 1 – Solution

Also 7  x  9, so –1  x – 8  1 and |x – 8|  1.

Then Taylor’s Inequality gives

Thus, if 7  x  9, the approximation in part (a) is accurate to 

within 0.0004.

cont’d
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Approximating Functions by Polynomials

Figure 6 shows the graphs of the Maclaurin polynomial 

approximations

to the sine curve.

Figure 6
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Approximating Functions by Polynomials

You can see that as n increases, Tn(x) is a good 

approximation to sin x on a larger and larger interval.

One use of the type of calculation done in Examples 1 

occurs in calculators and computers.

For instance, when you press the sin or ex key on your 

calculator, or when a computer programmer uses a 

subroutine for a trigonometric or exponential or Bessel 

function, in many machines a polynomial approximation is 

calculated.
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Applications to Physics
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Applications to Physics

Taylor polynomials are also used frequently in physics. In 

order to gain insight into an equation, a physicist often 

simplifies a function by considering only the first two or three

terms in its Taylor series.

In other words, the physicist uses a Taylor polynomial as an

approximation to the function. Taylor’s Inequality can then 

be used to gauge the accuracy of the approximation.
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Example 3 – Using Taylor to Compare Einstein and Newton

In Einstein’s theory of special relativity the mass of an object 

moving with velocity v is

where mo is the mass of the object when at rest and c is the 

speed of light. The kinetic energy of the object is the 

difference between its total energy and its energy at rest:

K = mc2 – moc
2
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Example 3 – Using Taylor to Compare Einstein and Newton

(a)Show that when v is very small compared with c, this   

expression for K agrees with classical Newtonian physics:

(b) Use Taylor’s Inequality to estimate the difference in   

these expressions for K when |v |  100 m/s.

Solution:

(a) Using the expressions given for K and m, we get
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Example 3 – Solution

With x = –v2/c2, the Maclaurin series for (1 + x2)–1/2 is most 

easily computed as a binomial series with                  

(Notice that |x| < 1 because v < c.)

Therefore we have

and

cont’d



23

Example 3 – Solution

If v is much smaller than c, then all terms after the first are 

very small when compared with the first term. If we omit 

them, we get

(b) If x = –v2/c2, f(x) = moc
2[(1 + x)–1/2 – 1], and M is a 

number such that | f(x) |  M, then we can use Taylor’s 

Inequality to write

cont’d
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Example 3 – Solution

We have f(x) =    moc
2(1 + x)–5/2 and we are given that           

|v |  100 m/s, so

Thus, with c = 3  108 m/s,

So when |v|  100 m/s, the magnitude of the error in 

using the Newtonian expression for kinetic energy is at 

most (4.2  10–10)mo.

cont’d
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Applications to Physics

Another application to physics occurs in optics. See figure 8.

Figure 8

Refraction at a spherical interface
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Applications to Physics

It depicts a wave from the point source S meeting a 

spherical interface of radius R centered at C. The ray SA is 

refracted toward P.

Using Fermat’s principle that light travels so as to minimize 

the time taken, Hecht derives the equation

where n1 and n2 are indexes of refraction and lo, li, so, and si

are the distances indicated in Figure 8. 
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Applications to Physics

By the Law of Cosines, applied to triangles ACS and ACP, 

we have

Gauss, in 1841, simplified Equation 1, by using the linear 

approximation cos  ≈ 1 for small values of . (This amounts 

to using the Taylor polynomial of degree 1.)
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Applications to Physics

Then Equation 1 becomes the following simpler equation:

The resulting optical theory is known as Gaussian optics, or 

first-order optics, and has become the basic theoretical tool 

used to design lenses.

A more accurate theory is obtained by approximating cos 

by its Taylor polynomial of degree 3 (which is the same as 

the Taylor polynomial of degree 2).
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Applications to Physics

This takes into account rays for which  is not so small, that 

is, rays that strike the surface at greater distances h above 

the axis.

The resulting optical theory is known as third-order optics.


