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Vectors

The term vector is used by scientists to indicate a quantity 

(such as displacement or velocity or force) that has both 

magnitude and direction. 

A vector is often represented by an arrow or a directed line 

segment. The length of the arrow represents the magnitude 

of the vector and the arrow points in the direction of the 

vector. 

We denote a vector by printing a letter in boldface (v) or by 

putting an arrow above the letter      .
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Vectors

For instance, suppose a particle moves along a line 

segment from point A to point B. 

The corresponding displacement vector v, shown in 

Figure 1, has initial point A (the tail) and terminal point B

(the tip) and we indicate this by writing

Equivalent vectors

Figure 1
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Vectors

Notice that the vector             has the same length and the 

same direction as v even though it is in a different position. 

We say that u and v are equivalent (or equal) and we write 

u = v. 

The zero vector, denoted by 0, has length 0. It is the only 

vector with no specific direction.
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Combining Vectors
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Combining Vectors

Suppose a particle moves from A to B, so its displacement 

vector is      . Then the particle changes direction and moves 

from B to C, with displacement vector       as in Figure 2. 

The combined effect of these displacements is that the 

particle has moved from A to C.

The resulting displacement

vector       is called the sum of

and       and we write

Figure 2
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Combining Vectors

In general, if we start with vectors u and v, we first move v

so that its tail coincides with the tip of u and define the sum 

of u and v as follows.

The definition of vector addition 

is illustrated in Figure 3. You can 

see why this definition is 

sometimes called the Triangle Law.

Figure 3

The Triangle Law
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Combining Vectors

In Figure 4 we start with the same 

vectors u and v as in Figure 3 

and draw another copy of v with 

the same initial point as u.

Completing the parallelogram, 

we see that u + v = v + u. 

This also gives another way to construct the sum: If we 

place u and v so they start at the same point, then u + v lies 

along the diagonal of the parallelogram with u and v as 

sides. (This is called the Parallelogram Law.)

Figure 4

The Parallelogram Law
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Example 1

Draw the sum of the vectors a and b shown in Figure 5.

Solution:

First we translate b and place its tail at the tip of a, being 

careful to draw a copy of b that has the same length and 

direction.

Figure 5
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Example 1 – Solution

Then we draw the vector a + b

[see Figure 6(a)] starting at the 

initial point of a and ending at the 

terminal point of the copy of b.

Alternatively, we could place b so it 

starts where a starts and construct 

a + b by the Parallelogram Law as in 

Figure 6(b).

Figure 6(a)

Figure 6(b)

cont’d
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Combining Vectors

It is possible to multiply a vector by a real number c. (In this 

context we call the real number c a scalar to distinguish it 

from a vector.)

For instance, we want 2v to be the same vector as v + v, 

which has the same direction as v but is twice as long. In 

general, we multiply a vector by a scalar as follows.
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Combining Vectors

This definition is illustrated in Figure 7.

We see that real numbers work like scaling factors here; 

that’s why we call them scalars.

Figure 7

Scalar multiples of v
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Combining Vectors

Notice that two nonzero vectors are parallel if they are 

scalar multiples of one another.

In particular, the vector –v = (–1)v has the same length as v

but points in the opposite direction. We call it the negative 

of v. 

By the difference u – v of two vectors we mean

u – v = u + (–v)
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Combining Vectors

So we can construct u – v by first drawing the negative of 

v, –v, and then adding it to u by the Parallelogram Law as in 

Figure 8(a). 

Alternatively, since v + (u – v) = u, the vector u – v, when 

added to v, gives u. So we could construct u – v as in 

Figure 8(b) by means of the Triangle Law.

Figure 8(a) Figure 8(b)

Drawing u – v
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Components
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Components

For some purposes it’s best to introduce a coordinate 

system and treat vectors algebraically. 

If we place the initial point of a vector a at the origin of a 

rectangular coordinate system, then the terminal point of a

has coordinates of the form (a1, a2) or (a1, a2, a3), 

depending on whether our coordinate system is 

two- or three-dimensional (see Figure 11).

Figure 11
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Components

These coordinates are called the components of a and we 

write

a = a1, a2 or          a = a1, a2, a3

We use the notation a1, a2 for the ordered pair that refers 

to a vector so as not to confuse it with the ordered pair 

(a1, a2) that refers to a point in the plane.

For instance, the vectors shown 

in Figure 12 are all equivalent to 

the vector       = 3, 2 whose 

terminal point is P(3, 2).

Figure 12

Representations of the vector a = 3, 2
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Components

What they have in common is that the terminal point is 

reached from the initial point by a displacement of three 

units to the right and two upward. 

We can think of all these geometric vectors as 

representations of the algebraic vector a = 3, 2 .

The particular representation       from the origin to the 

point P(3, 2) is called the position vector of the point P.
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Components

In three dimensions, the vector a =       = a1, a2, a3 is the 

position vector of the point P(a1, a2, a3). (See Figure 13.)

Representations of a = a1, a2, a3

Figure 13
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Components

Let’s consider any other representation       of a, where the 

initial point is A(x1, y1, z1) and the terminal point is 

B(x2, y2, z2). 

Then we must have x1 + a1 = x2, y1 + a2 = y2, and z1 + a3 = z2

and so a1 = x2 – x1, a2 = y2 – y1, and a3 = z2 – z1.

Thus we have the following result.
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Example 3 – Representing the Displacement Vector from One Point to Another

Find the vector represented by the directed line segment 

with initial point A(2, –3, 4) and terminal point B(–2, 1, 1).

Solution:

By (1), the vector corresponding to       is

a = –2 – 2, 1 – (–3), 1 – 4

= –4, 4, –3
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Components

The magnitude or length of the vector v is the length of any 

of its representations and is denoted by the symbol |v | or

||v ||. By using the distance formula to compute the length of 

a segment OP, we obtain the following formulas.
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Components

How do we add vectors algebraically? Figure 14 shows that 

if a = a1, a2 and b = b1, b2, then the sum is 

a + b = a1 + b1, a2 + b2, at least for the case where the 

components are positive. 

In other words, to add algebraic 

vectors we add their components. 

Similarly, to subtract vectors we 

subtract components.

Figure 14
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Components

From the similar triangles in Figure 15 we see that the 

components of ca are ca1 and ca2.

So to multiply a vector by a scalar we multiply each 

component by that scalar.

Figure 15
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Components
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Components

We denote by V2 the set of all two-dimensional vectors and 

by V3 the set of all three-dimensional vectors. 

More generally, we will consider the set Vn of all 

n-dimensional vectors. 

An n-dimensional vector is an ordered n-tuple:

a = a1, a2, . . . , an

where a1, a2, . . . , an are real numbers that are called the 

components of a.
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Components

Addition and scalar multiplication are defined in terms of 

components just as for the cases n = 2 and n = 3.
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Components

Three vectors in V3 play a special role. Let

Then i, j, and k are vectors that have length 1 and point in 

the directions of the positive x-, y-, and z-axes. Similarly, in 

two dimensions we define i = 1, 0 and j = 0, 1. (See 

Figure 17.)

Figure 17

Standard basis vectors in V2 and V3
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Components

If a = a1, a2, a3, then we can write

a = a1, a2, a3 = a1, 0, 0 + 0, a2, 0 + 0, 0, a3

= a11, 0, 0 + a20, 1, 0 + a30, 0, 1

a = a1i + a2j + a3k

Thus any vector in V3 can be expressed in terms of the 

standard basis vectors i, j, and k. For instance,

1, –2, 6 = i – 2j + 6k

Similarly, in two dimensions, we can write

a = a1, a2 = a1i + a2j
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Components

See Figure 18 for the geometric interpretation of Equations 3 

and 2 and compare with Figure 17.

Figure 17

Standard basis vectors in V2 and V3

Figure 18
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Components

A unit vector is a vector whose length is 1. For instance, 

i, j, and k are all unit vectors. In general, if a  0, then the 

unit vector that has the same direction as a is

In order to verify this, we let c = 1/|a |. Then u = ca and c is a 

positive scalar, so u has the same direction as a. Also

|u | = |ca | = |c | |a | =              = 1
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Applications
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Applications

Vectors are useful in many aspects of physics and 

engineering. Here we look at forces.

A force is represented by a vector because it has both a 

magnitude (measured in pounds or newtons) and a 

direction.

If several forces are acting on an object, the resultant force 

experienced by the object is the vector sum of these forces.
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Example 7

A 100-lb weight hangs from two wires as shown in 

Figure 19. Find the tensions (forces) T1 and T2 in both wires 

and the magnitudes of the tensions.

Figure 19
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Example 7 – Solution

We first express T1 and T2 in terms of their horizontal and 

vertical components. From Figure 20 we see that

T1 = –|T1 | cos 50 i + |T1 | sin 50 j

T2 = |T2 | cos 32 i + |T2 | sin 32j

The resultant T1 + T2 of the tensions counterbalances the 

weight w and so we must have

T1 + T2 = –w = 100 j

Figure 20
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Example 7 – Solution

Thus

(–|T1 |cos50+|T2 |cos32) i+(|T1 |sin50+|T2 |sin32) j=100 j

Equating components, we get

–|T1 | cos 50 + |T2 | cos 32 = 0

|T1 | sin 50 + |T2 | sin 32 = 100

Solving the first of these equations for |T2 | and substituting 

into the second, we get

cont’d
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Example 7 – Solution

So the magnitudes of the tensions are

and

Substituting these values in (5) and (6), we obtain the 

tension vectors

T1  –55.05i + 65.60j             T2  55.05i + 34.40j

cont’d


