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The Dot Product

So far we have added two vectors and multiplied a vector by 

a scalar. 

The question arises: Is it possible to multiply two vectors so 

that their product is a useful quantity?

One such product is the dot product, which we consider in 

this section. 
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Work and the Dot Product
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Work and the Dot Product

An example of a situation in physics and engineering where 

we need to combine two vectors occurs in calculating the 

work done by a force.

We defined the work done by a constant force F in moving 

an object through a distance d as W = Fd, but this applies 

only when the force is directed along the line of motion of 

the object. 
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Work and the Dot Product

Suppose, however, that the constant force is a vector F =  

pointing in some other direction, as in Figure 1. 

If the force moves the object from P to Q, then the 

displacement vector is D = So here we have two 

vectors: the force F and the displacement D.

Figure 1
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Work and the Dot Product

The work done by F is defined as the magnitude of the 

displacement, |D |, multiplied by the magnitude of the 

applied force in the direction of the motion, which, from 

Figure 1, is 

|      | = |F | cos 

So the work done by F is defined to be

W = |D | (|F | cos  ) = |F ||D | cos 

Notice that work is a scalar quantity; it has no direction. But 

its value depends on the angle  between the force and 

displacement vectors.
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Work and the Dot Product

We use the expression in Equation 1 to define the dot 

product of two vectors even when they don’t represent force 

or displacement.

This product is called the dot product because of the dot in 

the notation a  b.
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Work and the Dot Product

The result of computing a  b is not a vector. It is a real 

number, that is, a scalar. For this reason, the dot product is 

sometimes called the scalar product. 

In the example of finding the work done by a force F in 

moving an object through a displacement D = by 

calculating F  D = |F ||D | cos , it makes no sense for the 

angle  between F and D to be /2 or larger because 

movement from P to Q couldn’t take place.

We make no such restriction in our general definition of                   

a  b, however, and allow  to be any angle from 0 to .
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Example 1 – Computing a Dot Product from Lengths and the Contained Angle

If the vectors a and b have lengths 4 and 6, and the angle 

between them is /3, find a  b.

Solution:

According to the definition,

a  b = |a ||b | cos(/3) 

= 4  6 

= 12
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Work and the Dot Product

Two nonzero vectors a and b are called perpendicular or 

orthogonal if the angle between them is  = /2. 

For such vectors we have

a  b = |a ||b | cos(/2) 

= 0

and conversely if a  b = 0, then cos  = 0, so  = /2. 

The zero vector 0 is considered to be perpendicular to all 

vectors. 
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Work and the Dot Product

Therefore

Because cos  > 0 if 0   < /2 and cos  < 0 if /2 <   , 

we see that a  b is positive for  < /2 and negative for 

 > /2. 

We can think of a  b as measuring the extent to which 

a and b point in the same direction.
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Work and the Dot Product

The dot product a  b is positive if a and b point in the same 

general direction, 0 if they are perpendicular, and negative if 

they point in generally opposite directions (see Figure 3).

Figure 3
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Work and the Dot Product

In the extreme case where a and b point in exactly the same 

direction, we have  = 0, so cos  = 1 and 

a  b = |a ||b | 

If a and b point in exactly opposite directions, then  =  and 

so cos  = –1 and a  b = –|a ||b |.
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The Dot Product in Component Form
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The Dot Product in Component Form

Suppose we are given two vectors in component form:

a = a1, a2, a3 b = b1, b2, b3

We want to find a convenient expression for a  b in terms of 

these components. If we apply the Law of Cosines to the 

triangle in Figure 4, we get

|a – b |2 = |a |2 + |b |2 – 2|a ||b | cos 

= |a |2 + |b |2 – 2a  b
Figure 4
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The Dot Product in Component Form

Solving for the dot product, we obtain

a  b =    (|a |2 + |b |2 – |a – b |2)

=   [a1
2 + a2

2 + a3
2 + b1

2 + b2
2 + b3

2 – (a1 – b1)
2

– (a2 – b2)
2 – (a3 – b3)

2]

= a1b1 + a2b2 + a3b3
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The Dot Product in Component Form

Thus, to find the dot product of a and b, we multiply 

corresponding components and add. 

The dot product of two-dimensional vectors is found in a 

similar fashion:

a1, a2  b1, b2 = a1b1 + a2b2
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Example 3 – Computing Dot Products from Components

2, 4  3, –1 = 2(3) + 4(–1) 

= 2

–1, 7, 4  6, 2, –  = (–1)(6) + 7(2) + 4(– )

= 6

(i + 2j – 3k)  (2j – k) = 1(0) + 2(2) + (–3)(–1) 

= 7
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The Dot Product in Component Form

The dot product obeys many of the laws that hold for 

ordinary products of real numbers.

These are stated in the following theorem.
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Projections
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Projections

Figure 5 shows representations      and      of two vectors    

a and b with the same initial point P. If S is the foot of the 

perpendicular from R to the line containing      , then the 

vector with representation      is called the vector projection 

of b onto a and is denoted by proja b. (You can think of it as 

a shadow of b).

Figure 5

Vector projections
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Projections

The scalar projection of b onto a (also called the 

component of b along a) is defined to be the signed 

magnitude of the vector projection, which is the number        

|b | cos , where  is the angle between a and b.                          

(See Figure 6.) 

This is denoted by compa b. 

Figure 6

Scalar projection
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Projections

Observe that it is negative if /2 <   . (Note that we have 

used the component of the force F along the displacement D, 

compD F.) 

The equation

a  b = |a | |b | cos 

= |a |(|b | cos ) 

shows that the dot product of a and b can be interpreted as 

the length of a times the scalar projection of b onto a.
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Projections

Since

the component of b along a can be computed by taking the 

dot product of b with the unit vector in the direction of a. 

We summarize these ideas as follows.
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Example 7

Find the scalar projection and vector projection of 

b = 1, 1, 2 onto a = –2, 3, 1.

Solution:

Since the scalar projection of 

b onto a is



27

Example 7 – Solution

The vector projection is this scalar projection times the unit 

vector in the direction of a:

cont’d


