

Vectors and the Geometry of Space

The Cross Product

The **cross product** $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b} , unlike the dot product, is a vector. For this reason it is also called the **vector product**.

We will see that $\mathbf{a} \times \mathbf{b}$ is useful in geometry because it is perpendicular to both \mathbf{a} and \mathbf{b} .

But we introduce this product by looking at a situation where it arises in physics and engineering.

If we tighten a bolt by applying a force to a wrench as in Figure 1, we produce a turning effect called a *torque* τ .

Figure 1

The magnitude of the torque depends on two things:

The distance from the axis of the bolt to the point where the force is applied. This is |r|, the length of the position vector r.

The scalar component of the force F in the direction perpendicular to r.

This is the only component that can cause a rotation and, from Figure 2, we see that it is \mathbf{r}

 $|\mathbf{F}| \sin \theta$

where θ is the angle between the vectors **r** and **F**.

We define the magnitude of the torque vector to be the product of these two factors:

$$\boldsymbol{\tau}| = |\mathbf{r}||\mathbf{F}| \sin \theta$$

The direction is along the axis of rotation. If **n** is a unit vector that points in the direction in which a right-threaded bolt moves (see Figure 1), we define the **torque** to be the vector

$$\boldsymbol{\tau} = (|\mathbf{r}||\mathbf{F}| \sin \theta)\mathbf{n}$$

We denote this torque vector by $\tau = \mathbf{r} \times \mathbf{F}$ and we call it the cross product or vector product of \mathbf{r} and \mathbf{F} .

The type of expression in Equation 1 occurs so frequently in the study of fluid flow, planetary motion, and other areas of physics and engineering, that we define and study the cross product of *any* pair of three-dimensional vectors **a** and **b**.

Definition If **a** and **b** are nonzero three-dimensional vectors, the **cross product** of **a** and **b** is the vector

$$\mathbf{a} \times \mathbf{b} = (|\mathbf{a}||\mathbf{b}|\sin\theta)\mathbf{n}$$

where θ is the angle between **a** and **b**, $0 \le \theta \le \pi$, and **n** is a unit vector perpendicular to both **a** and **b** and whose direction is given by the **right-hand rule**: If the fingers of your right hand curl through the angle θ from **a** to **b**, then your thumb points in the direction of **n**. (See Figure 3.)

The right-hand rule gives the direction of **a x b**.

If either **a** or **b** is **0**, then we define $\mathbf{a} \times \mathbf{b}$ to be **0**. Because $\mathbf{a} \times \mathbf{b}$ is a scalar multiple of **n**, it has the same direction as **n** and so

 $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Notice that two nonzero vectors **a** and **b** are parallel if and only if the angle between them is 0 or π . In either case, sin $\theta = 0$ and so $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

Two nonzero vectors **a** and **b** are parallel if and only if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.

This makes sense in the torque interpretation: If we pull or push the wrench in the direction of its handle (so **F** is parallel to **r**), we produce no torque.

Example 1

A bolt is tightened by applying a 40-N force to a 0.25-m wrench, as shown in Figure 4. Find the magnitude of the torque about the center of the bolt.

Figure 4

Example 1 – Solution

The magnitude of the torque vector is

$$|\tau| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}||\mathbf{F}| \sin 75^{\circ} |\mathbf{n}|$$

= (0.25)(40) sin 75°
= 10 sin 75°
≈ 9.66 N⋅m

If the bolt is right-threaded, then the torque vector itself is

$$\tau = |\tau| \mathbf{n}$$

 $\approx 9.66 \mathbf{n}$

where **n** is a unit vector directed down into the page.

In general, the right-hand rule shows that

$$\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$$

Another algebraic law that fails for the cross product is the associative law for multiplication; that is, in general,

 $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

For instance, if
$$\mathbf{a} = \mathbf{i}$$
, $\mathbf{b} = \mathbf{i}$, and $\mathbf{c} = \mathbf{j}$, then
 $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j} = \mathbf{0} \times \mathbf{j} = \mathbf{0}$

whereas

$$\mathbf{i} \times (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

However, some of the usual laws of algebra *do* hold for cross products:

Properties of the Cross Product If **a**, **b**, and **c** are vectors and *c* is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

4.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

A geometric interpretation of the length of the cross product can be seen by looking at Figure 6.

Figure 6

If **a** and **b** are represented by directed line segments with the same initial point, then they determine a parallelogram with base $|\mathbf{a}|$, altitude $|\mathbf{b}| \sin \theta$, and area

$$A = |\mathbf{a}|(|\mathbf{b}| \sin \theta) = |\mathbf{a} \times \mathbf{b}|$$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

Suppose **a** and **b** are given in component form:

$$a = a_1 i + a_2 j + a_3 k$$
 $b = b_1 i + b_2 j + b_3 k$

We can express $\mathbf{a} \times \mathbf{b}$ in component form by using the Vector Distributive Laws together with the results from Example 2:

$$\mathbf{a} \times \mathbf{b} = (a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k})$$
$$= a_1b_1\mathbf{i} \times \mathbf{i} + a_1b_2\mathbf{i} \times \mathbf{j} + a_1b_3\mathbf{i} \times \mathbf{k}$$
$$+ a_2b_1\mathbf{j} \times \mathbf{i} + a_2b_2\mathbf{j} \times \mathbf{j} + a_2b_3\mathbf{j} \times \mathbf{k}$$
$$+ a_3b_1\mathbf{k} \times \mathbf{i} + a_3b_2\mathbf{k} \times \mathbf{j} + a_3b_3\mathbf{k} \times \mathbf{k}$$

 $= a_1 b_2 \mathbf{k} + a_1 b_3 (-\mathbf{j}) + a_2 b_1 (-\mathbf{k}) + a_2 b_3 \mathbf{i} + a_3 b_1 \mathbf{j} + a_3 b_2 (-\mathbf{i})$

 $= (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$

2 If
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

In order to make this expression for $\mathbf{a} \times \mathbf{b}$ easier to remember, we use the notation of determinants.

A determinant of order 2 is defined by

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

For example,

$$\begin{vmatrix} 2 & 1 \\ -6 & 4 \end{vmatrix} = 2(4) - 1(-6) = 14$$

A **determinant of order 3** can be defined in terms of second-order determinants as follows:

3

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Observe that each term on the right side of Equation 3 involves a number a_i in the first row of the determinant, and a_i is multiplied by the second-order determinant obtained from the left side by deleting the row and column in which a_i appears.

Notice also the minus sign in the second term. For example,

$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & 0 & 1 \\ -5 & 4 & 2 \end{vmatrix} = 1 \begin{vmatrix} 0 & 1 \\ 4 & 2 \end{vmatrix} - 2 \begin{vmatrix} 3 & 1 \\ -5 & 2 \end{vmatrix} + (-1) \begin{vmatrix} 3 & 0 \\ -5 & 4 \end{vmatrix}$$

= 1(0-4) - 2(6+5) + (-1)(12-0) = -38

If we now rewrite the expression for $\mathbf{a} \times \mathbf{b}$ in (2) using second-order determinants and the standard basis vectors **i**, **j**, and **k**, we see that the cross product of the vectors $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ is

4
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

In view of the similarity between Equations 3 and 4, we often write

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

5

Although the first row of the symbolic determinant in Equation 5 consists of vectors, if we expand it as if it were an ordinary determinant using the rule in Equation 3, we obtain Equation 4.

The symbolic formula in Equation 5 is probably the easiest way of remembering and computing cross products.

Example 3 – Cross Product of Vectors in Component Form

If $\mathbf{a} = \langle 1, 3, 4 \rangle$ and $\mathbf{b} = \langle 2, 7, -5 \rangle$, then, from Equation 5, we have

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$
$$= (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k}$$
$$= -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$$

The product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ is called the scalar triple product of the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . Its geometric significance can be seen by considering the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} . (See Figure 7.)

The area of the base parallelogram is $A = |\mathbf{b} \times \mathbf{c}|$. If θ is the angle between the vectors \mathbf{a} and $\mathbf{b} \times \mathbf{c}$, then the height *h* of the parallelepiped is $h = |\mathbf{a}| |\cos \theta|$. (We must use $|\cos \theta|$ instead of $\cos \theta$ in case $\theta > \pi/2$.) Thus the volume of the parallelepiped is

Figure 7

$$V = Ah = |\mathbf{b} \times \mathbf{c}||\mathbf{a}||\cos \theta| = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Therefore we have proved the following:

The volume of the parallelepiped determined by the vectors **a**, **b**, and **c** is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Instead of thinking of the parallelepiped as having its base parallelogram determined by **b** and **c**, we can think of it with base parallelogram determined by **a** and **b**. In this way, we see that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

But the dot product is commutative, so we can write

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Suppose that **a**, **b**, and **c** are given in component form:

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k}$

Then

6

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \begin{bmatrix} \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \mathbf{k} \end{bmatrix}$$
$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

7

This shows that we can write the scalar triple product of **a**, **b**, and **c** as the determinant whose rows are the components of these vectors:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Example 6 – Coplanar Vectors

Use the scalar triple product to show that the vectors $\mathbf{a} = \langle 1, 4, -7 \rangle$, $\mathbf{b} = \langle 2, -1, 4 \rangle$, and $\mathbf{c} = \langle 0, -9, 18 \rangle$ are coplanar; that is, they lie in the same plane.

Solution:

We use Equation 7 to compute their scalar triple product:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 4 & -7 \\ 2 & -1 & 4 \\ 0 & -9 & 18 \end{vmatrix}$$

Example 6 – Solution

= 0

$$= 1 \begin{vmatrix} -1 & 4 \\ -9 & 18 \end{vmatrix} - 4 \begin{vmatrix} 2 & 4 \\ 0 & 18 \end{vmatrix} - 7 \begin{vmatrix} 2 & -1 \\ 0 & -9 \end{vmatrix}$$
$$= 1(18) - 4(36) - 7(-18)$$

Therefore the volume of the parallelepiped determined by **a**, **b**, and **c** is 0. This means that **a**, **b**, and **c** are coplanar.

cont'd

8

The product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is called the **vector triple product** of \mathbf{a} , \mathbf{b} , and \mathbf{c} .

