

9.4 The Cross Product

The Cross Product

The cross product $\mathbf{a} \times \mathbf{b}$ of two vectors \mathbf{a} and \mathbf{b}, unlike the dot product, is a vector. For this reason it is also called the vector product.

We will see that $\mathbf{a} \times \mathbf{b}$ is useful in geometry because it is perpendicular to both \mathbf{a} and \mathbf{b}.

But we introduce this product by looking at a situation where it arises in physics and engineering.

Torque and the Cross Product

Torque and the Cross Product

If we tighten a bolt by applying a force to a wrench as in Figure 1, we produce a turning effect called a torque τ.

Figure 1

Torque and the Cross Product

The magnitude of the torque depends on two things:

- The distance from the axis of the bolt to the point where the force is applied. This is $|\mathbf{r}|$, the length of the position vector \mathbf{r}.
- The scalar component of the force \mathbf{F} in the direction perpendicular to \mathbf{r}.

Torque and the Cross Product

This is the only component that can cause a rotation and, from Figure 2, we see that it is
$|\mathbf{F}| \sin \theta$
where θ is the angle between the vectors \mathbf{r} and \mathbf{F}.

Figure 2
We define the magnitude of the torque vector to be the product of these two factors:

$$
|\tau|=|\mathbf{r} \| \mathbf{F}| \sin \theta
$$

Torque and the Cross Product

The direction is along the axis of rotation. If \mathbf{n} is a unit vector that points in the direction in which a right-threaded bolt moves (see Figure 1), we define the torque to be the vector

$$
1 \quad \boldsymbol{\tau}=(|\mathbf{r}||\mathbf{F}| \sin \theta) \mathbf{n}
$$

We denote this torque vector by $\tau=\mathbf{r} \times \mathbf{F}$ and we call it the cross product or vector product of \mathbf{r} and \mathbf{F}.

Torque and the Cross Product

The type of expression in Equation 1 occurs so frequently in the study of fluid flow, planetary motion, and other areas of physics and engineering, that we define and study the cross product of any pair of three-dimensional vectors \mathbf{a} and \mathbf{b}.

Torque and the Cross Product

Definition If \mathbf{a} and \mathbf{b} are nonzero three-dimensional vectors, the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=(|\mathbf{a} \| \mathbf{b}| \sin \theta) \mathbf{n}
$$

where θ is the angle between \mathbf{a} and $\mathbf{b}, 0 \leqslant \theta \leqslant \pi$, and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} and whose direction is given by the right-hand rule: If the fingers of your right hand curl through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of \mathbf{n}. (See Figure 3.)

Figure 3

Torque and the Cross Product

If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \times \mathbf{b}$ to be $\mathbf{0}$. Because $\mathbf{a} \times \mathbf{b}$ is a scalar multiple of \mathbf{n}, it has the same direction as \mathbf{n} and so

$$
\mathbf{a} \times \mathbf{b} \text { is orthogonal to both } \mathbf{a} \text { and } \mathbf{b} \text {. }
$$

Notice that two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if the angle between them is 0 or π. In either case, $\sin \theta=0$ and so $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.

$$
\text { Two nonzero vectors } \mathbf{a} \text { and } \mathbf{b} \text { are parallel if and only if } \mathbf{a} \times \mathbf{b}=\mathbf{0} \text {. }
$$

This makes sense in the torque interpretation: If we pull or push the wrench in the direction of its handle (so F is parallel to \mathbf{r}), we produce no torque.

Example 1

A bolt is tightened by applying a $40-\mathrm{N}$ force to a $0.25-\mathrm{m}$ wrench, as shown in Figure 4. Find the magnitude of the torque about the center of the bolt.

Figure 4

Example 1 - Solution

The magnitude of the torque vector is

$$
\begin{aligned}
|\boldsymbol{\tau}|=|\mathbf{r} \times \mathbf{F}| & =|\mathbf{r}||\mathbf{F}| \sin 75^{\circ}|\mathbf{n}| \\
& =(0.25)(40) \sin 75^{\circ} \\
& =10 \sin 75^{\circ} \\
& \approx 9.66 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

If the bolt is right-threaded, then the torque vector itself is

$$
\begin{aligned}
\tau & =|\tau| \mathbf{n} \\
& \approx 9.66 \mathrm{n}
\end{aligned}
$$

where \mathbf{n} is a unit vector directed down into the page.

Torque and the Cross Product

In general, the right-hand rule shows that

$$
\mathbf{b} \times \mathbf{a}=-\mathbf{a} \times \mathbf{b}
$$

Another algebraic law that fails for the cross product is the associative law for multiplication; that is, in general,

$$
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times(\mathbf{b} \times \mathbf{c})
$$

For instance, if $\mathbf{a}=\mathbf{i}, \mathbf{b}=\mathbf{i}$, and $\mathbf{c}=\mathbf{j}$, then

$$
(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=0 \times \mathbf{j}=\mathbf{0}
$$

whereas

$$
\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j}
$$

Torque and the Cross Product

However, some of the usual laws of algebra do hold for cross products:

Properties of the Cross Product If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and c is a scalar, then

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$

Torque and the Cross Product

A geometric interpretation of the length of the cross product can be seen by looking at Figure 6.

Figure 6

If \mathbf{a} and \mathbf{b} are represented by directed line segments with the same initial point, then they determine a parallelogram with base $|\mathbf{a}|$, altitude $|\mathbf{b}| \sin \theta$, and area

$$
A=|\mathbf{a}|(|\mathbf{b}| \sin \theta)=|\mathbf{a} \times \mathbf{b}|
$$

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

The Cross Product in Component Form

The Cross Product in Component Form

Suppose \mathbf{a} and \mathbf{b} are given in component form:

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
$$

We can express $\mathbf{a} \times \mathbf{b}$ in component form by using the Vector Distributive Laws together with the results from Example 2:

$$
\begin{aligned}
& \mathbf{a} \times \mathbf{b}=\left(a_{1} \mathbf{i}\right.\left.+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right) \\
&=a_{1} b_{1} \mathbf{i} \times \mathbf{i}+a_{1} b_{2} \mathbf{i} \times \mathbf{j}+a_{1} b_{3} \mathbf{i} \times \mathbf{k} \\
&+a_{2} b_{1} \mathbf{j} \times \mathbf{i}+a_{2} b_{2} \mathbf{j} \times \mathbf{j}+a_{2} b_{3} \mathbf{j} \times \mathbf{k} \\
&+a_{3} b_{1} \mathbf{k} \times \mathbf{i}+a_{3} b_{2} \mathbf{k} \times \mathbf{j}+a_{3} b_{3} \mathbf{k} \times \mathbf{k}
\end{aligned}
$$

The Cross Product in Component Form

$$
\begin{aligned}
& =a_{1} b_{2} \mathbf{k}+a_{1} b_{3}(-\mathbf{j})+a_{2} b_{1}(-\mathbf{k})+a_{2} b_{3} \mathbf{i}+a_{3} b_{1} \mathbf{j}+a_{3} b_{2}(-\mathbf{i}) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

$$
2 \text { If } \mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \text { and } \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \text {, then }
$$

$$
\mathbf{a} \times \mathbf{b}=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

In order to make this expression for $\mathbf{a} \times \mathbf{b}$ easier to remember, we use the notation of determinants.

A determinant of order $\mathbf{2}$ is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

The Cross Product in Component Form

For example,

$$
\left|\begin{array}{rr}
2 & 1 \\
-6 & 4
\end{array}\right|=2(4)-1(-6)=14
$$

A determinant of order 3 can be defined in terms of second-order determinants as follows:

$$
3 \quad\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

The Cross Product in Component Form

Observe that each term on the right side of Equation 3 involves a number a_{i} in the first row of the determinant, and a_{i} is multiplied by the second-order determinant obtained from the left side by deleting the row and column in which a_{i} appears.

Notice also the minus sign in the second term. For example,

$$
\begin{aligned}
\left|\begin{array}{rrr}
1 & 2 & -1 \\
3 & 0 & 1 \\
-5 & 4 & 2
\end{array}\right| & =1\left|\begin{array}{ll}
0 & 1 \\
4 & 2
\end{array}\right|-2\left|\begin{array}{rr}
3 & 1 \\
-5 & 2
\end{array}\right|+(-1)\left|\begin{array}{rr}
3 & 0 \\
-5 & 4
\end{array}\right| \\
& =1(0-4)-2(6+5)+(-1)(12-0)=-38
\end{aligned}
$$

The Cross Product in Component Form

If we now rewrite the expression for $\mathbf{a} \times \mathbf{b}$ in (2) using second-order determinants and the standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}, we see that the cross product of the vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ is

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{4}\\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
$$

In view of the similarity between Equations 3 and 4, we often write

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

The Cross Product in Component Form

Although the first row of the symbolic determinant in Equation 5 consists of vectors, if we expand it as if it were an ordinary determinant using the rule in Equation 3, we obtain Equation 4.

The symbolic formula in Equation 5 is probably the easiest way of remembering and computing cross products.

Example 3 - Cross Product of Vectors in Component Form

If $\mathbf{a}=\langle 1,3,4\rangle$ and $\mathbf{b}=\langle 2,7,-5\rangle$, then, from Equation 5 , we have

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & 4 \\
2 & 7 & -5
\end{array}\right| \\
& =\left|\begin{array}{rr}
3 & 4 \\
7 & -5
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & 4 \\
2 & -5
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right| \mathbf{k} \\
& =(-15-28) \mathbf{i}-(-5-8) \mathbf{j}+(7-6) \mathbf{k} \\
& =-43 \mathbf{i}+13 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

Triple Products

Triple Products

The product $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is called the scalar triple product of the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}. Its geometric significance can be seen by considering the parallelepiped determined by the vectors a, b, and c. (See Figure 7.)

The area of the base parallelogram is $A=/ \mathbf{b} \times \mathbf{c} /$. If θ is the angle between the vectors \mathbf{a} and $\mathbf{b} \times \mathbf{c}$, then the height h of the parallelepiped is $h=|\mathbf{a}||\cos \theta|$. (We must use |cos $\theta \mid$ instead of $\cos \theta$ in case $\theta>\pi / 2$.) Thus the volume of the parallelepiped is

Figure 7

$$
V=A h=|\mathbf{b} \times \mathbf{c}\|\mathbf{a}\| \cos \theta|=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|
$$

Triple Products

Therefore we have proved the following:

The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude of their scalar triple product:

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|
$$

Instead of thinking of the parallelepiped as having its base parallelogram determined by \mathbf{b} and \mathbf{c}, we can think of it with base parallelogram determined by \mathbf{a} and \mathbf{b}. In this way, we see that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

Triple Products

But the dot product is commutative, so we can write

6

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
$$

Suppose that \mathbf{a}, \mathbf{b}, and \mathbf{c} are given in component form:
$\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \quad \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$
Then

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{a} \cdot\left[\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \mathbf{k}\right] \\
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{aligned}
$$

Triple Products

This shows that we can write the scalar triple product of
\mathbf{a}, \mathbf{b}, and \mathbf{c} as the determinant whose rows are the components of these vectors:

7

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Example 6 - Coplanar Vectors

Use the scalar triple product to show that the vectors
$\mathbf{a}=\langle 1,4,-7\rangle, \mathbf{b}=\langle 2,-1,4\rangle$, and $\mathbf{c}=\langle 0,-9,18\rangle$ are coplanar; that is, they lie in the same plane.

Solution:

We use Equation 7 to compute their scalar triple product:

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{rrr}
1 & 4 & -7 \\
2 & -1 & 4 \\
0 & -9 & 18
\end{array}\right|
$$

Example 6 - Solution

$$
\begin{aligned}
& =1\left|\begin{array}{rr}
-1 & 4 \\
-9 & 18
\end{array}\right|-4\left|\begin{array}{rr}
2 & 4 \\
0 & 18
\end{array}\right|-7\left|\begin{array}{ll}
2 & -1 \\
0 & -9
\end{array}\right| \\
& =1(18)-4(36)-7(-18) \\
& =0
\end{aligned}
$$

Therefore the volume of the parallelepiped determined by \mathbf{a}, \mathbf{b}, and \mathbf{c} is 0 . This means that \mathbf{a}, \mathbf{b}, and \mathbf{c} are coplanar.

Triple Products

The product $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ is called the vector triple product of \mathbf{a}, \mathbf{b}, and \mathbf{c}.

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

