MA 182 Integrals Involving Exponential Functions Section 5.5

1. Often an integral involving an exponential function can be transformed into a much simpler integral of the type $\int e^u du$ by using an appropriate u-substitution for the exponent.

(a)
$$\int e^{5x} dx$$
 Let $u = 5x$

(b)
$$\int e^{kx} dx$$
 Let $u =$

(c)
$$\int \frac{1}{e^x} dx$$
 Hint: Rewrite the integral as $\int e^{-x} dx$ and make use of your answer to part (b).

(d)
$$\int x^2 e^{x^3} dx$$
 Let $u = x^3$

►

(e)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
 Let $u =$

2. Not every integral involving an exponential function is best integrated by substituting u for the exponent. Often, if the integrand involves more than one exponential function, it is best to substitute u for more than just the exponent.

(a)
$$\int \frac{e^x}{e^x + 1} dx$$
 Let $u = e^x + 1$

(b)
$$\int e^{2x} \sqrt{e^{2x}+5} \, dx$$
 Let $u =$