
     MA 182 Trigonometric Substitutions 
Section 5.7 (4th Edition) 
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Using these basic formulas,  
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Based on these differentiation formulas, we have the following integration formulas: 

 
Examples: 
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Other integrals which contains expressions of the form  2 2a x−  or 2 2a x+   (a > 0) can often 

be evaluated by making use of a substitution which involves appropriate inverse trigonometric 

functions.  The basic idea is to make a substitution that will eliminate the radical. 

 

If the integrand contains 2 2a x− , a substitution involving the inverse sine function will often 

be useful.  In this case,  

 Let 1sin , ( / 2 / 2)x
a

θ π θ π−= − ≤ ≤ , so that sin x
a

θ = .   

 Therefore sin , cosx a dx a dθ θ θ= =  and 

          2 2 2 2 2 2 2 2sin (1 sin ) cos cos cosa x a a a a a aθ θ θ θ θ− = − = − = = =  

 Note that cos cosθ θ=  because / 2 / 2π θ π− ≤ ≤  and cos 0θ >  in quadrants I and IV.   
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The following example illustrates the technique. 
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If the integrand contains 2 2a x+ , a substitution involving the inverse tangent function will 

often be useful. 

In this case,  

 Let 1tan x
a

θ −= ,  / 2 / 2π θ π− < < , so that tan x
a

θ = . 

 Therefore 2tan , secx a dx aθ θ= = , and 

 2 2 2 2 2 2 2tan 1 tan sec sec seca x a a a a a aθ θ θ θ θ+ = + = + = = =  

Note that sec secθ θ=  because / 2 / 2π θ π− < <  and sec 0θ >  in quadrants I and IV. 

An example follows. 
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MA 182  Trigonometric Substitutions - Exercises 
 
 
Use either a trigonometric or another appropriate substitution to evaluate each indefinite integral. 
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∫  Hint:  This can be integrated using a trigonometric substitution but there  

is a much easier way. 
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8. (a) Verify by differentiation that sec ln sec tand Cθ θ θ θ= + +∫  

 (b) Evaluate the indefinite integral 
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9. p. 394/#13 Hint:  After using the trigonometric substitution 2 tanx θ= , rewrite the  

integral in terms of sines and cosines in order to integrate. 
 
 
 
10. p. 394/#14 
 


