MA 182
Trigonometric Substitutions
Section 5.7 (4 $4^{\text {th }}$ Edition)
Recall that $\frac{d\left(\sin ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ and $\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}$
Using these basic formulas,

$$
\frac{d\left(\sin ^{-1} x / a\right)}{d x}=\frac{1 / a}{\sqrt{1-\frac{x^{2}}{a^{2}}}}=\frac{1}{\sqrt{a^{2}-x^{2}}} \quad \text { and } \quad \frac{d\left(\tan ^{-1} x / a\right)}{d x}=\frac{1 / a}{1+\frac{x^{2}}{a^{2}}}=\frac{a}{a^{2}+x^{2}}
$$

Based on these differentiation formulas, we have the following integration formulas:

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C \quad \text { and } \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C
$$

Examples:

$$
\begin{equation*}
\int \frac{1}{\sqrt{9-x^{2}}} d x=\sin ^{-1} \frac{x}{3}+C \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int \frac{1}{x^{2}+2} d x=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C \tag{2}
\end{equation*}
$$

Other integrals which contains expressions of the form $\sqrt{a^{2}-x^{2}}$ or $\sqrt{a^{2}+x^{2}} \quad(a>0)$ can often be evaluated by making use of a substitution which involves appropriate inverse trigonometric functions. The basic idea is to make a substitution that will eliminate the radical.

If the integrand contains $\sqrt{a^{2}-x^{2}}$, a substitution involving the inverse sine function will often be useful. In this case,

Let $\theta=\sin ^{-1} \frac{x}{a},(-\pi / 2 \leq \theta \leq \pi / 2)$, so that $\sin \theta=\frac{x}{a}$.
Therefore $x=a \sin \theta, d x=a \cos \theta d \theta$ and

$$
\sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \sin ^{2} \theta}=\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}=a \sqrt{\cos ^{2} \theta}=a|\cos \theta|=a \cos \theta
$$

Note that $|\cos \theta|=\cos \theta$ because $-\pi / 2 \leq \theta \leq \pi / 2$ and $\cos \theta>0$ in quadrants I and IV.

The following example illustrates the technique.
$\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$

If the integrand contains $\sqrt{a^{2}+x^{2}}$, a substitution involving the inverse tangent function will often be useful.

In this case,
Let $\theta=\tan ^{-1} \frac{x}{a},-\pi / 2<\theta<\pi / 2$, so that $\tan \theta=\frac{x}{a}$.
Therefore $x=a \tan \theta, d x=a \sec ^{2} \theta$, and

$$
\sqrt{a^{2}+x^{2}}=\sqrt{a^{2}+a^{2} \tan ^{2} \theta}=a \sqrt{1+\tan ^{2} \theta}=a \sqrt{\sec ^{2} \theta}=a|\sec \theta|=a \sec \theta
$$

Note that $|\sec \theta|=\sec \theta$ because $-\pi / 2<\theta<\pi / 2$ and $\sec \theta>0$ in quadrants I and IV.
An example follows.
$\int x^{3} \sqrt{x^{2}+9} d x$

Use either a trigonometric or another appropriate substitution to evaluate each indefinite integral.

1. $\int \frac{1}{\sqrt{16-x^{2}}} d x$
2. $\quad \int \frac{x}{\sqrt{9-x^{4}}} d x$ Hint: Let $u=x^{2}$
3. $\int \frac{x^{3}}{\sqrt{9-x^{4}}} d x$ Hint: This can be integrated using a trigonometric substitution but there is a much easier way.
4. $\int \sqrt{4-x^{2}} d x$
5. p. 394/\#16
6. $\int \frac{1}{x^{2}+25} d x$
7. $\int \frac{x}{x^{2}+25} d x$
8. (a) Verify by differentiation that $\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$
(b) Evaluate the indefinite integral $\int \frac{1}{\sqrt{x^{2}+4}} d x$
9. p. 394/\#13 Hint: After using the trigonometric substitution $x=2 \tan \theta$, rewrite the integral in terms of sines and cosines in order to integrate.
10. p. 394/\#14
