You are going to use Euler's Method, with increments of 0.5, to draw an approximation to the solution to the differential equation $\frac{d y}{d x}=x-y$ that has the initial condition $\mathrm{y}(0)=3$.

1. Starting at the point $(0,3)$, compute the slope of the tangent line.
2. Draw a tangent line with this slope at $(0,3)$. Extend it to the point where $x=0.5$. Estimate the y coordinate.
3. Using $x=0.5$ and the y-coordinate you found in step 2 , compute the slope of the new tangent line. (Remember that $\frac{d y}{d x}=x-y$ gives the slope of the tangent line at any point.)
4. Draw a new tangent line at the point where $\mathrm{x}=0.5$ and extend it to the point where $\mathrm{x}=1$. Again, estimate the y -coordinate.
5. Using $\mathrm{x}=1$ and the y -coordinate you found in step 4, compute the slope of the third tangent line.
6. Draw the tangent line from the point where $\mathrm{x}=1$ to the point where $\mathrm{x}=1.5$, approximate the new y coordinate, find a new slope and draw a new tangent line.
7. Repeat this process at $\mathrm{x}=2, \mathrm{x}=2.5$, and $\mathrm{x}=3$.

You now
have a curve that approximates a function $\mathrm{y}(\mathrm{x})$ that is the solution to the initial-value problem $\frac{d y}{d x}=x-y, \mathrm{y}(0)$ $=3$. From your graph, estimate the value of $y(3)$.
A) Sketch the direction (slope) field of the differential equation $y^{\prime}=x-y$

x	y	$y^{\prime}=x-y$	x	y	$y^{\prime}=x-y$
-2	0			-2	2
-1	0			-1	2
0	0			0	2
1	0		1	2	
2	0		2	2	
-2	1		-2	-1	
-1	1		-1	-1	
0	1		0	-1	
1	1		1	-1	
2	1		2	-1	

B) Use your slope field to sketch a solution curve that passes through the point $(1,0)$
C) Use Euler's method with step size 0.1 to estimate $y(1.4)$, where $y(x)$ is the solution of the initial value problem $y^{\prime}=x-y, \quad \frac{d y}{d x}=x-y, \quad y(1)=0$
D) Sketch the Euler graph on the same axes as your slope field.

