1. $\quad \sum_{n=1}^{\infty} \frac{2}{3 n} \quad$ Diverges; multiple of harmonic series.
2. $\quad \sum_{n=1}^{\infty}(-1)^{n-1} \frac{2}{3 n}$ Converges by Alt. Series Test, but not absolutely convergent.
3. $\quad \sum_{n=1}^{\infty} \frac{n}{2^{n}(n+1)} \quad$ Converges by Ratio Test; $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}<1$.
4. $\quad \sum_{n=1}^{\infty} \frac{2 n+1}{3 n+2} \quad$ Diverges by nth-term test because $\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+2}=\frac{2}{3} \neq 0$
5. $\quad \sum_{n=1}^{\infty} \frac{\ln n}{n^{3}} \quad$ Converges by Basic Comp. Test because $\ln n<n$, so $\frac{\ln n}{n^{3}}<\frac{n}{n^{3}}=\frac{1}{n^{2}}$
6. $\quad \sum_{n=1}^{\infty} \frac{n}{e^{n^{2}}} \quad$ Converges by Ratio Test; $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1$. Integral Test can also be used.
7. $\quad \sum_{n=1}^{\infty} \frac{2^{n}}{n!} \quad$ Converges by Ratio Test; $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1$
8. $\quad \sum_{n=1}^{\infty} \frac{(2 n+3)^{2}}{(n+1)^{3}} \quad$ Diverges; use Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n}$
9. $\quad \sum_{n=1}^{\infty} 5(-1)^{n}\left(\frac{2}{3}\right)^{n-1}$ Absolutely convergent Geometric Series with $\mathrm{r}=-2 / 3, \mathrm{a}=-5, \mathrm{~S}=-3$
10. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+1}{2 n^{3}+n} \quad$ Converges by Alt. Series Test; also absolutely convergent by Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
11. $\sum_{n=1}^{\infty} \frac{n^{100}}{n!} \quad$ Converges by Ratio Test; $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0<1$
12. $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}} \quad$ Diverges by Ratio Test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=4>1$
