Infinite Series - Solutions

MA 182 Sections 8.2 – 8.4

- 1. $\sum_{n=1}^{\infty} \frac{2}{3n}$ Diverges; multiple of harmonic series.
- 2. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2}{3n}$ Converges by Alt. Series Test, but not absolutely convergent.
- 3. $\sum_{n=1}^{\infty} \frac{n}{2^n (n+1)}$ Converges by Ratio Test; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} < 1.$
- 4. $\sum_{n=1}^{\infty} \frac{2n+1}{3n+2}$ Diverges by nth-term test because $\lim_{n \to \infty} \frac{2n+1}{3n+2} = \frac{2}{3} \neq 0$
- 5. $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$ Converges by Basic Comp. Test because $\ln n < n$, so $\frac{\ln n}{n^3} < \frac{n}{n^3} = \frac{1}{n^2}$
- 6. $\sum_{n=1}^{\infty} \frac{n}{e^{n^2}}$ Converges by Ratio Test; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$. Integral Test can also be used.
- 7. $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ Converges by Ratio Test; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$
- 8. $\sum_{n=1}^{\infty} \frac{(2n+3)^2}{(n+1)^3}$ Diverges; use Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n}$
- 9. $\sum_{n=1}^{\infty} 5(-1)^n \left(\frac{2}{3}\right)^{n-1}$ Absolutely convergent Geometric Series with r = -2/3, a = -5, S = -3
- 10. $\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{2n^3 + n}$ Converges by Alt. Series Test; also absolutely convergent by Limit Comp. Test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$
- 11. $\sum_{n=1}^{\infty} \frac{n^{100}}{n!}$ Converges by Ratio Test; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$
- 12. $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ Diverges by Ratio Test, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 4 > 1$