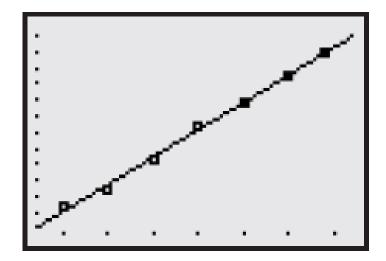


Function Notation and Making Predictions

Using Function Notation with Models

Example	Year	Average Salary (thousands of dollars)
The table shows the average	1975	16.6
salaries of professors at four-	1980 1985	22.1 31.2
year colleges and universities	1990	41.9
	1995	49.1
Let <i>s</i> be the professors'	2000 2004	57.7 65.0
average salary(in thousands	2001	00.0


of dollars) at *t* years since 1900. A possible model is s = 1.71t - 113.12

1. Verify that the above function is the model.

Using Function Notation with Models

Solution

- Graph the model and the scattergram in the same viewing window
- Function seems to model the data well

Example Continued

2. Rewrite the equation s = 1.71t - 113.12 with the function name *f*.

Using Function Notation with Models

Solution

- *t* is the independent variable
- *s* is the dependent variable
- *f* is the function name, so we rewrite s = f(t)
- Substitute f(t) for s: f(t) = 1.71t 113.12

Example Continued

3. Predict the average salary in 2011.

Using Function Notation with Models

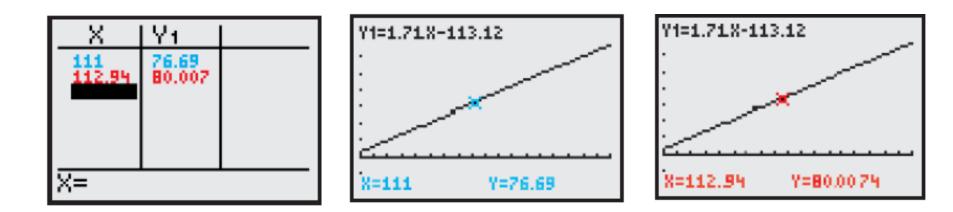
Solution

- Represent the year 2011 by t = 111
- Substitute 111 for *t* into f(t) = 1.71t 113.12
- $\begin{array}{ll} f\,(111) = 1.71(111) 113.12 & & {\rm Substitute\,\, 111\,\, for\,\, t.} \\ = 76.69 & & {\rm Simplify.} \end{array}$

Example Continued

4. Predict when the average salary will be \$80,000.

Using Function Notation with Models


Solution

- Represent average salary of \$80,000 by s = 80
- Since s = f(t), substitute 80 for f(t) and solve for t80 = 1.71t - 113.12 80 + 113.12 = 1.71t - 113.12 + 113.12 193.12 = 1.71t - 113.12 + 113.12 193.12 = 1.71t193.12 = 1.71t112.94 $\approx t$ • Simplify.

Using Function Notation with Models

Graphing Calculator

- According to model, average salary will be 80,000in 1900 + 113 = 2013
- Using TRACE verify the predictions

Section 2.3

Using Function Notation with Models

Summary

- When making a prediction about the dependent variable of a linear model, substitute a chosen value for the independent variable in the model. Then solve for the dependent variable.
- When making a prediction about the independent variable of a linear model, substitute a chosen value for the dependent variable in the model. Then solve for the independent variable.

Four-Step Modeling Process

Using Function Notation with Models

Process

To find a linear model and make estimates and predictions,

- 1. Create a scattergram of data to determine whether there is a nonvertical line that comes close to the data points. If so, choose two points (not necessarily data points) that you can use to find the equation of a linear model.
- 2. Find an equation of your model.

Four-Step Modeling Process

Using Function Notation with Models

Process

- 3. Verify your equation by checking that the graph of your model contains the two chosen points and comes close to all of the data points.
- 4. Use the equation of your model to make estimates, make predictions, and draw conclusions.

Finding Intercepts

Example

In an example from Section 2.2, we found the equation p = -0.53t + 74.50, where p is the percentage of

Year	Percent Who Smoke	
Tear	Who Shloke	
1970	37.4	
1980	33.2	
1990	25.3	
2000	23.1	
2005	19.0	

American adults who smoke and *t* years since 1990.

1. Rewrite the equation p = -0.53t + 74.50 with the function name *g*.

Finding Intercepts

Solution

• To use the name g, substitute g(t) for p: g(t) = -0.53t + 74.50

Example Continued

2. Find g(110). What does the result mean in this function?

Solution

• Substitute 110 for *t* in the equation g(t) = -0.53t + 74.50:

Finding Intercepts

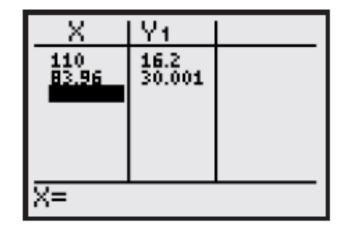
Solution Continued

- g(t) = -0.53t + 74.50 Equation of g
- g(110) = -0.53(110) + 74.50 Substitute 110 for t.
 - = 16.2 Simplify.
- When *t* is 110, *p* is 16.2. According to the model, 16.2% of American adults will smoke in 2010.

Example Continued

3. Find the value of t when g(t) = 30. What does is mean in this situation?

Finding Intercepts


Solution

• Substitute 30 for g(t) in the equation and solve for tg(t) = -0.53t + 74.50Equation of g 30 = -0.53t + 74.50Substitute 30 for g(t). 30 - 74.50 = -0.53t + 74.50 - 74.50Subtract 74.50 from both sides. -44.5 = -0.53tCombine like terme. -44.5 - 0.53tDivide both sides by -0.53. $\frac{-0.53}{-0.53} = \frac{-0.53}{-0.53}$ $83.96 \approx t$ Simplify.

Finding Intercepts

Solution Continued

- The model estimates that 30% of Americans smoked in
 1900 + 83.96 ≈ 1984
- Verify work on graphing calculator table

Example Continued

4. Find the *p*-intercept of the model. What does it mean in this situation?

Finding Intercepts

Solution

- Since the model g(t) = -0.53t + 74.50 is in slopeintercept form the *p*-intercept is (0, 74.50)
- The model estimates that 74.5% of American adults smoked in 1900
- Research would show that this estimate is too high model breakdown has occurred

Example Continued

5. Find the *t*-intercept. What does it mean?

Finding Intercepts

Solution

• To find the *t*-intercept, we substitute 0 for g(t) and solve for *t*:

0 = -0.53t + 74.50Substitute 0 for g(t). 0 + 0.53t = -0.53t + 74.50 + 0.53tAdd 0.53t to both sides. 0.53t = 74.50Combine like terms. $\frac{0.53t}{0.53} = \frac{74.50}{0.53}$ Divide both sides by 0.53. $t \approx 140.57$ Simplify.

Finding Intercepts

Solution Continued

- The *t*-intercept is (140.57, 0)
- So, the model predicts that no Americans adults will smoke in1900+140.57 ≈ 2041
- Common sense suggest this probably won't occur
- Use TRACE to verify the *p* and *i*-intercepts.

Section 2.3

Intercepts of Models

Finding Intercepts

Property

If a function of the form p = mt + b, where $m \neq 0$, is used to model a situation, then

- The *p*-intercept is (0, b).
- To find the coordinate of the *t*-intercept, substitute 0 for *p* in the model's equation and solve for *t*.

Using Data Described in Words to Make Predictions

Example

Sales of bagged salads increased approximately linearly from \$0.9 billion in 1996 to \$2.7 billion in 2004. Predict in which year the sales will be \$4 billion.

Solution

- Let *s* be the sales (in billions of dollars)
- Let *t* be the years since 1990
- We want an equation of the form s = mt + b

Using Data Described in Words to Make Predictions

Solution Continued	Years	Sales
• First find the slope	Since 1990	(billions of dollars)
$m = \frac{2.7 - 0.9}{2.3} \approx 0.23$	6	0.9
$m = \frac{14-6}{14-6} \approx 0.23$	14	2.7

- Substitute 0.23 for m: s = 0.23x + b
- To find b we substitute 6 for t and 0.9 for s 0.9 = 0.23(6) + b Substitute 6 for t and 0.9 for s.

 $0.9 = 1.38 + b \qquad \qquad \text{Multiply.}$

$$0.9 - 1.38 = 1.38 + b - 1.38$$

-0.48 = b

Subtract 1.38 from both sides.

Combine like terms.

Using Data Described in Words to Make Predictions

Solution Continued

• Then substitute –0.48 for *b*:

s = 0.23t - 0.48

• To predict when the sales will be \$4 billion, we substitute 4 for *s* in the equation and solve for *t*:

$$4 = 0.23t - 0.48$$
 Substitute 4 for s.

4 + 0.48 = 0.23t - 0.48 + 0.48

$$4.48 = 0.23t$$

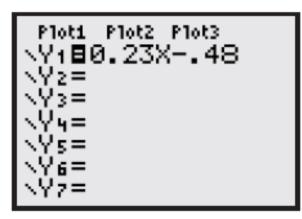
 $19.48 \approx t$

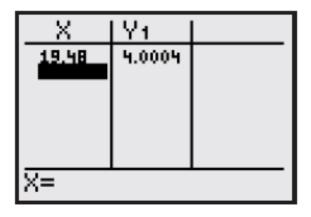
Add 0.48 to both sides.

Combine like termø.

Divide both sides by 0.23.

Section 2.3


Lehmann, Intermediate Algebra, 4ed


Slide 22

Using Data Described in Words to Make Predictions

Solution Continued

- The model predicts that sales will be \$4 billion in 1990+19 = 2009
- Verify using a graphing calculator table

