

BRASE / BRASE

Chapter 4 Elementary Probability Theory

Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania

Probability

- Probability is a numerical measure that indicates the likelihood of an event.
- All probabilities are between 0 and 1, inclusive.
- A probability of 0 means the event is impossible.
- A probability of 1 means the event is certain to occur.
- Events with probabilities near 1 are likely to occur.

Probability

- Events can be named with capital letters:
 A, B, C...
- P(A) means the probability of A occurring.
 P(A) is read "P of A"
 - $0 \le P(A) \le 1$

Probability Assignment

- Assignment by intuition based on intuition, experience, or judgment.
- Assignment by relative frequency –
 P(A) = Relative Frequency = f
- Assignment for equally likely $\frac{d}{du}$ tcomes

 $P(A) = \frac{Number of Outcomes Favorable to Event A}{Total Number of Outcomes}$

Law of Large Numbers

- In the long run, as the sample size increases, the relative frequency will get closer and closer to the theoretical probability.
 - Example: We repeat the penny experiment, and the relative frequency gets closer and closer to P(head) = 0.50

Relative Frequency	0.52	0.518	0.495	0.503	0.4996
f = number of flips	104	259	495	1006	2498
n = number of heads	200	500	1000	2000	5000

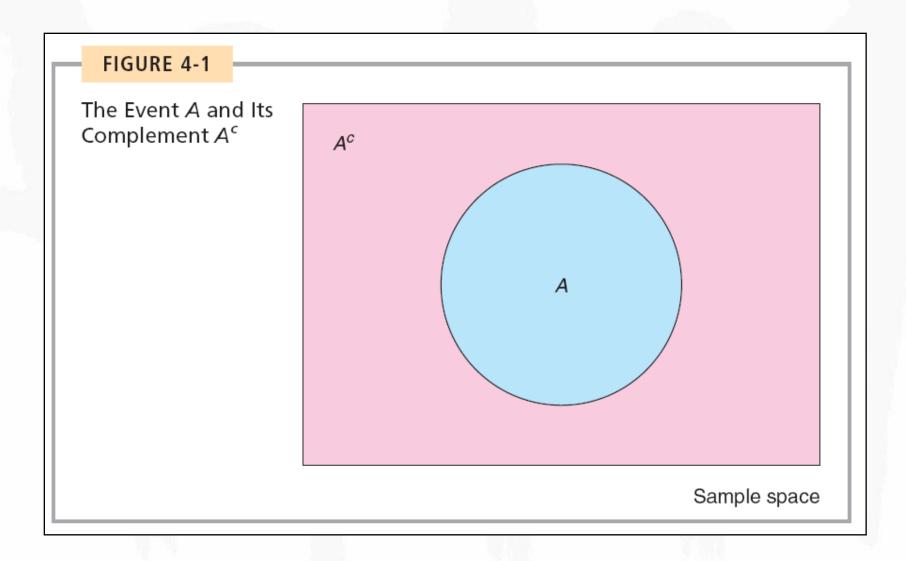
Probability Definitions

- Statistical Experiment: Any random activity that results in a definite outcome.
- Event: A collection of one or more outcomes in a statistical experiment.
- Simple Event: An event that consists of exactly one outcome in a statistical experiment.
- Sample Space: The set of all simple events.

The Sum Rule and The Complement Rule

- The sum of the probabilities of all the simple events in the sample space must equal 1.
- The complement of event A is the event that A does not occur, denoted by A^c
- $P(A^c) = 1 P(A)$

The Complement Rule



Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.

Probability versus Statistics

- Probability is the field of study that makes statements about what will occur when a sample is drawn from a known population.
- Statistics is the field of study that describes how samples are to be obtained and how inferences are to be made about unknown populations.

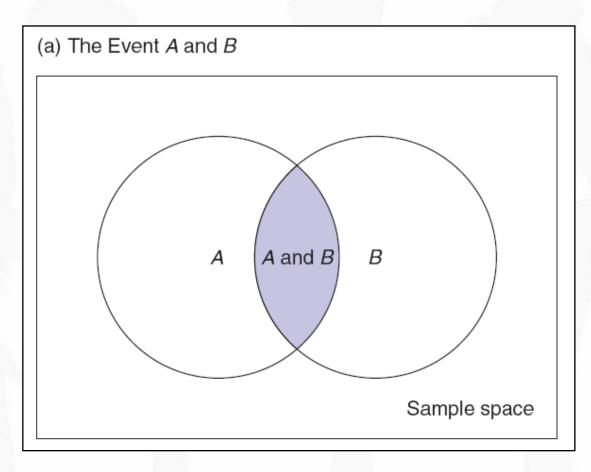
Independent Events

 Two events are independent if the occurrence or nonoccurrence of one event does *not* change the probability of the other event.

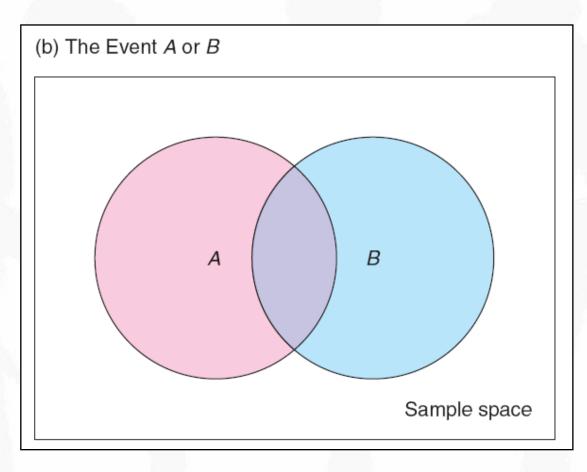
- Multiplication Rule for Independent Events $P(A \text{ and } B) = P(A) \cdot P(B)$
- General Multiplication Rule For all events (independent or not):

 $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$ $P(A \text{ and } B) = P(B) \cdot P(A \mid B)$ Conditional Probability (when $P(B) \neq 0$): $P(B) \neq 0$ $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Two Events Occurring Together



Either or Both of Two Events Occurring



Mutually Exclusive Events

- Two events are mutually exclusive if they cannot occur at the same time.
- Mutually Exclusive = Disjoint
- If A and B are mutually exclusive, then

P(A and B) = 0

Addition Rules

- If A and B are mutually exclusive, then P(A or B) = P(A) + P(B).
- If A and B are not mutually exclusive, then P(A or B) = P(A) + P(B) P(A and B).

Critical Thinking

- Pay attention to translating events described by common English phrases into events described using and, or, complement, or given.
- Rules and definitions of probabilities have extensive applications in everyday lives.

Multiplication Rule for Counting

Multiplication rule of counting

If there are *n* possible outcomes for event E_1 and *m* possible outcomes for event E_2 , then there are a total of $n \times m$ or *nm* possible outcomes for the series of events E_1 followed by E_2 .

This rule extends to outcomes involving three, four, or more series of events.

Tree Diagrams

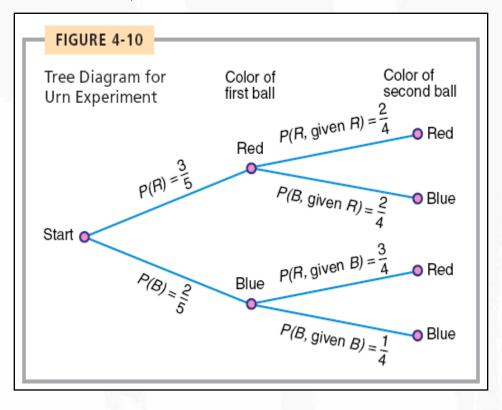
- Displays the outcomes of an experiment consisting of a sequence of activities.
 - The total number of branches equals the total number of outcomes.
 - Each unique outcome is represented by following a branch from start to finish.

Tree Diagrams with Probability

- We can also label each branch of the tree with its respective probability.
- To obtain the probability of the events, we can multiply the probabilities as we work down a particular branch.

Urn Example

 Suppose there are five balls in an urn. Three are red and two are blue. We will select a ball, note the color, and, without replacing the first ball, select a second ball.



There are four possible outcomes: Red, Red Red, Blue Blue, Red Blue, Blue

We can find the probabilities of the outcomes by using the multiplication rule for dependent events.

Factorials

- For counting numbers 1, 2, 3, ...
- ! is read "factorial"
 - So for example, 5! is read "five factorial"
- n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1
 - So for example, 5! = 5 * 4 * 3 * 2 * 1 = 120
- 1! = 1
- 0! = 1

Permutations

- Permutation: ordered grouping of objects.
- Counting Rule for Permutations

Counting rule for permutations

The number of ways to arrange in order n distinct objects, taking them r at a time, is

$$P_{n,r} = \frac{n!}{(n-r)!} \tag{9}$$

where *n* and *r* are whole numbers and $n \ge r$. Another commonly used notation for permutations is nPr.

Combinations

- A combination is a grouping that pays no attention to order.
- Counting Rule for Combinations

Counting rule for combinations

The number of *combinations* of n objects taken r at a time is

$$n,r = \frac{n!}{r!(n-r)!}$$
 (10)

where *n* and *r* are whole numbers and $n \ge r$. Other commonly used notations for combinations include nCr and $\binom{n}{r}$.