
Math 165 – Section 5.1 – Composition of functions

1) Write the definition – section 5.1, page 258, new edition.

 $(f \circ g)(x) =$

2) Composition: "x goes into g", "the output from g is the input into f".

Look at the tables A, B, and C above.

- a) Show how you go from the number 1 listed on table A, to the number 4 in table B.
- b) Show how you go from the number 4 in table B to the number -1 in table C.
- c) If we put together steps (a) and (b) above, we can say that $(f \circ g) (1) = f(g(1)) = f(4) = -1$. This means, first we evaluate g(1) = 3(1) + 1 = 4; then evaluate f(4) = (1/2)(4) - 3 = -1. Now, using the same diagram above, complete the following:
 - a. What is (f o g)(3)? b. What is (f o g)(7)?
- 3) Given f(x) = 2x 7 and g(x) = -3x + 1, show all work to find each of the following:
 a. Find (f o g) (-2)
 b. Find (g o f)(-1)

Math 165 – Section 5.1 – Composition of functions

What is composition?

Putting one function into another - where? In the "variable place" of the other

EXAMPLE Finding a Composite Function and Its Domain

Suppose that $f(x) = 2x^2 - x + 4$ and g(x) = 4x + 1. Find: (a) $f \circ g$ (b) $g \circ f$

Then find the domain of each composite function.

(a)
$$(f \circ g)(x) = f(g(x)) = f(4x+1) = 2(4x+1)^2 - (4x+1) + 4$$

 $g(x) = 4x+1$
 $= 2(16x^2 + 8x+1) - 4x - 1 + 4$
 $= 32x^2 + 16x + 2 - 4x + 3$
 $= 32x^2 + 12x + 5$

The domain of g is all real numbers as is the domain of the composite function, so the domain of $f \circ g$ is the set of all real numbers.

EXAMPLE Finding a Composite Function and Its Domain

Suppose that $f(x) = 2x^2 - x + 4$ and g(x) = 4x + 1. Find: (a) $f \circ g$ (b) $g \circ f$

Then find the domain of each composite function.

(b)
$$(g \circ f)(x) = g(f(x)) = g(2x^2 - x + 4) = 4(2x^2 - x + 4) + 1$$

 $f(x) = 2x^2 - x + 4$
 $= 8x^2 - 4x + 16 + 1$
 $= 8x^2 - 4x + 17$

The domain of f is all real numbers as is the domain of the composite function, so the domain of $g \circ f$ is the set of all real numbers.

Math 165 – Section 5.1 – Composite functions - Applications

4) In the real world there are many situations in which some quantity depends on a variable which at the same time, depends on another variable.

Suppose that an oil tanker is leaking oil and we want to be able to determine the area o the circular oil patch around the ship. It is determined that the oil is leaking from the tanker in such a way that the radius of the circular oil patch around the ship is increasing at a rate of 3 feet per minute.

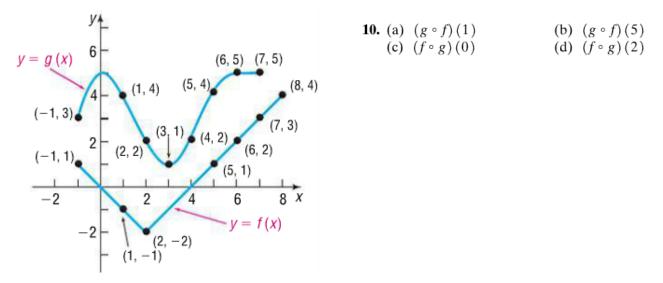
$$r(t) = 3t$$

$$A(r) = \pi r^{2}$$

a) What will be the area of the spill after 2 minutes? After 5 minutes? After t-minutes?

b) NOTE: (we'll do in class)

- 5) The volume of a balloon is given by $V(r) = \frac{4}{3}\pi r^3$ and the radius is increasing with time, in seconds, according to the formula: $r(t) = \frac{1}{2}t^3$.
 - a) What is the volume of the balloon after 3 seconds? After 5 seconds? After t seconds?


c) NOTE: (we'll do in class)

Math 165 – Section 5.1 – Composite functions – From Tables and Graphs

6) Use the values in the table to evaluate the indicated composition of functions.

8.	x	-3	-2	-1	0	1	2	3
	f (x)	11	9	7	5	3	1	-1
	g (x)	-8	-3	0	1	0	-3	-8

7) Use the graphs to evaluate the composition of functions.

Math 165 – Section 5.1 – Composite functions and their Domain

8) Find the composite function and its domain. Also, make up some evaluation problems using the given functions.

In Problems 23–38, for the given functions f and g, find: (a) $f \circ g$ (b) $g \circ f$ (c) $f \circ f$ (d) $g \circ g$ State the domain of each composite function. 23. f(x) = 2x + 3; g(x) = 3x25. f(x) = 3x + 1; $g(x) = x^2$ 27. $f(x) = x^2$; $g(x) = x^2 + 4$ 29. $f(x) = \frac{3}{x - 1}$; $g(x) = \frac{2}{x}$ 31. $f(x) = \frac{x}{x - 1}$; $g(x) = -\frac{4}{x}$ 33. $f(x) = \sqrt{x}$; g(x) = 2x + 335. $f(x) = x^2 + 1$; $g(x) = \sqrt{x - 1}$ 37. $f(x) = \frac{x - 5}{x + 1}$; $g(x) = \frac{x + 2}{x - 3}$

24. f(x) = -x; g(x) = 2x - 426. $f(x) = x + 1; g(x) = x^2 + 4$ 28. $f(x) = x^2 + 1; g(x) = 2x^2 + 3$ 30. $f(x) = \frac{1}{x+3}; g(x) = -\frac{2}{x}$ 32. $f(x) = \frac{x}{x+3}; g(x) = \frac{2}{x}$ 34. $f(x) = \sqrt{x-2}; g(x) = 1 - 2x$ 36. $f(x) = x^2 + 4; g(x) = \sqrt{x-2}$ 38. $f(x) = \frac{2x - 1}{x-2}; g(x) = \frac{x+4}{2x-5}$

Math 165 – Section 5.1 – Components of a Composite functions

9) Find the components *f* and *g*, so that *H* = *f*og

 Δ In Problems 47–52, find functions f and g so that $f \circ g = H$.

47.
$$H(x) = (2x + 3)^4$$
 48. $H(x) = (1 + x^2)^3$

 49. $H(x) = \sqrt{x^2 + 1}$
 50. $H(x) = \sqrt{1 - x^2}$

 51. $H(x) = |2x + 1|$
 52. $H(x) = |2x^2 + 3|$

10) Applications

- **61.** Automobile Production The number N of cars produced at a certain factory in one day after t hours of operation is given by $N(t) = 100t 5t^2$, $0 \le t \le 10$. If the cost C (in dollars) of producing N cars is C(N) = 15,000 + 8000N, find the cost C as a function of the time t of operation of the factory.
- **62. Environmental Concerns** The spread of oil leaking from a tanker is in the shape of a circle. If the radius *r* (in feet) of the spread after *t* hours is $r(t) = 200\sqrt{t}$, find the area *A* of the oil slick as a function of the time *t*.

Math 165 – Section 5.1 – Composite functions – Applications

64. Cost of a Commodity The price *p*, in dollars, of a certain commodity and the quantity *x* sold obey the demand equation

$$p = -\frac{1}{5}x + 200 \quad 0 \le x \le 1000$$

Suppose that the cost C, in dollars, of producing x units is

$$C = \frac{\sqrt{x}}{10} + 400$$

Assuming that all items produced are sold, find the cost C as a function of the price p.

- 65. Volume of a Cylinder The volume V of a right circular cylinder of height h and radius r is $V = \pi r^2 h$. If the height is twice the radius, express the volume V as a function of r.
- 66. Volume of a Cone The volume V of a right circular cone is $V = \frac{1}{3} \pi r^2 h$. If the height is twice the radius, express the volume V as a function of r.

Functions from Functions (Professor McCullough)

Let
$$f(x) = x^2$$
; $g(x) = \frac{1}{x}$; $h(x) = \sqrt{x}$; $k(x) = e^x$; $A(x) = \ln(x)$

Express each of the following as a combination of the functions above. Use the operations addition, subtraction, multiplication, division and composition.

1.
$$e^{\sqrt{x}}$$
 2. $x^2 e^x$

3.
$$\frac{e^{x}}{x^{2}}$$

4. $x^{2} + \sqrt{x}$
5. $e^{\ln(x)}$
6. $\ln(x) - e^{x}$

7.
$$\ln\left(\frac{1}{x}\right)$$
 8. $\ln\left(x^2 + \sqrt{x}\right)$

9. $\sqrt{x^2 + e^x}$

10.
$$e^{x^2 - \sqrt{x}}$$