Math 165 – Section 5.5 - Properties of Logarithms

To do at home - Go to section 5.5 and copy the contents of **all** the yellow boxes of the section.

$$\log_a 1 = 0 \qquad \log_a a = 1$$

Properties of Logarithms

In the properties given next, M and a are positive real numbers, $a \neq 1$, and r is any real number.

The number $\log_a M$ is the exponent to which a must be raised to obtain M. That is,

$$a^{\log_a M} = M \tag{1}$$

The logarithm with base a of a raised to a power equals that power. That is,

$$\log_a a^r = r \tag{2}$$

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$\log_a(MN) = \log_a M + \log_a N \tag{3}$$

The Log of a Quotient Equals the Difference of the Logs

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \tag{4}$$

The Log of a Power Equals the Product of the Power and the Log

$$\log_a M^r = r \log_a M \tag{5}$$

$$a^r = e^{r \ln a} \tag{6}$$

Section 5.5 - Properties of Logarithms - Expanding

1) Expand using properties of logarithms

45.
$$\log_a(u^2v^3)$$
 $u > 0, v > 0$

48.
$$\ln(x\sqrt{1+x^2})$$
 $x > 0$

51.
$$\log \left[\frac{x(x+2)}{(x+3)^2} \right] \quad x > 0$$

46.
$$\log_2\left(\frac{a}{b^2}\right)$$
 $a > 0, b > 0$

49.
$$\log_2\left(\frac{x^3}{x-3}\right)$$
 $x > 3$

52.
$$\log \left[\frac{x^3 \sqrt{x+1}}{(x-2)^2} \right] \quad x > 2$$

47.
$$\ln(x^2 \sqrt{1-x})$$
 $0 < x < 1$

50.
$$\log_5\left(\frac{\sqrt[3]{x^2+1}}{x^2-1}\right)$$
 $x>1$

53.
$$\ln \left[\frac{x^2 - x - 2}{(x+4)^2} \right]^{1/3} \quad x > 2$$

Section 5.5 - Properties of Logarithms - Condensing

2) Rewrite as a single logarithmic expression

57.
$$3 \log_5 u + 4 \log_5 v$$

60.
$$\log_2\left(\frac{1}{x}\right) + \log_2\left(\frac{1}{x^2}\right)$$

58.
$$2 \log_3 u - \log_3 v$$

61.
$$\log_4(x^2 - 1) - 5\log_4(x + 1)$$

59.
$$\log_3 \sqrt{x} - \log_3 x^3$$

62.
$$\log(x^2 + 3x + 2) - 2\log(x + 1)$$

Section 5.5 - Properties of Logarithms – Write y as a function of x

3) Express y as a function of x. The constant C is a positive number

87.
$$\ln y = \ln x + \ln C$$

89.
$$\ln y = \ln x + \ln(x+1) + \ln C$$

91.
$$\ln y = 3x + \ln C$$

93.
$$\ln(y-3) = -4x + \ln C$$

88.
$$\ln y = \ln(x + C)$$

90.
$$\ln y = 2 \ln x - \ln(x+1) + \ln C$$

92.
$$\ln y = -2x + \ln C$$

94.
$$\ln(y+4) = 5x + \ln C$$

Section 5.5 - Properties of Logarithms – Mixed Practice

4) Solve the following problems

Mixed Practice -

85. If
$$f(x) = \ln x$$
, $g(x) = e^x$, and $h(x) = x^2$, find:

(a) $(f \circ g)(x)$. What is the domain of $f \circ g$?

(b) $(g \circ f)(x)$. What is the domain of $g \circ f$?

(c) $(f \circ g)(5)$

(d) $(f \circ h)(x)$. What is the domain of $f \circ h$?

(e) $(f \circ h)(e)$
86. If $f(x) = \log_2 x$, $g(x) = 2^x$, and $h(x) = 4x$, find:

(a) $(f \circ g)(x)$. What is the domain of $f \circ g$?

(b) $(g \circ f)(x)$. What is the domain of $g \circ f$?

(c) $(f \circ g)(3)$

(d) $(f \circ h)(x)$. What is the domain of $f \circ h$?

(e) $(f \circ h)(g)$