Section 7.6

Graphs of the Sine and Cosine Functions

PEARSON

$$
\begin{array}{lll}
y=f(x)=\sin x & y=f(x)=\cos x & y=f(x)=\tan x \\
y=f(x)=\csc x & y=f(x)=\sec x & y=f(x)=\cot x
\end{array}
$$

The Graph of the Sine Function $y=\boldsymbol{\operatorname { s i n }} x$

x	$y=\sin x$	(x, y)
0	0	$(0,0)$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6}, \frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2}, 1\right)$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$\left(\frac{5 \pi}{6}, \frac{1}{2}\right)$
$\frac{7 \pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7 \pi}{6},-\frac{1}{2}\right)$
$\frac{3 \pi}{2}$	-1	$\left(\frac{3 \pi}{2},-1\right)$
$\frac{11 \pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11 \pi}{6},-\frac{1}{2}\right)$
2π	0	$(2 \pi, 0)$

$$
y=\sin x, 0 \leq x \leq 2 \pi
$$

$$
y=\sin x,-\infty<x<\infty
$$

Properties of the Sine Function

1. The domain is the set of all real numbers.
2. The range consists of all real numbers from -1 to 1 , inclusive.
3. The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
4. The sine function is periodic, with period 2π.
5. The x-intercepts are $\ldots,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi, \ldots$; the y-intercept is 0 .
6. The maximum value is 1 and occurs at $x=\ldots,-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots$;
the minimum value is -1 and occurs at $x=\ldots,-\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}, \ldots$.

1 Graph Functions of the Form $y=A \sin (\omega x)$ Using Transformations

EXAMPLE

Graphing Functions of the Form $y=A \sin (\omega x)$ Using Transformations

Graph $y=3 \sin x$ using transformations.

$$
\text { (a) } y=\sin x
$$

Multiply by 3
vertical strech by a factor of 3
(b) $y=3 \sin x$

EXAMPLE

Graphing Functions of the Form $y=A \sin (\omega x)$ Using Transformations

Graph $y=-\sin (2 x)$ using transformations.

(a) $y=\sin x$
$\xrightarrow[\text { Multiply by }-1 ;]{ } \quad\left(\frac{\pi}{2},-1\right) \quad$ (b) $y=-\sin x$
$\begin{aligned} & \text { Reflect about the } \\ & x \text {-axis }\end{aligned} y_{\uparrow} \quad \mathbf{L}$ Period $2 \pi \longrightarrow \mathbf{C}$

The Graph of the Cosine Function

x	$y=\cos \boldsymbol{x}$	(x, y)
0	1	$(0,1)$
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3}, \frac{1}{2}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2}, 0\right)$
$\frac{2 \pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2 \pi}{3},-\frac{1}{2}\right)$
π	$-\frac{1}{4}$	$(\pi,-1)$
$\frac{4 \pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4 \pi}{3},-\frac{1}{2}\right)$
$\frac{3 \pi}{2}$	0	$\left(\frac{3 \pi}{2}, 0\right)$
$\frac{5 \pi}{3}$	$\frac{1}{2}$	$\left(\frac{5 \pi}{3}, \frac{1}{2}\right)$
2π	1	$(2 \pi, 1)$

$y=\cos x, 0 \leq x \leq 2 \pi$

Properties of the Cosine Function

1. The domain is the set of all real numbers.
2. The range consists of all real numbers from -1 to 1 , inclusive.
3. The cosine function is an even function, as the symmetry of the graph with respect to the y-axis indicates.
4. The cosine function is periodic, with period 2π.
5. The x-intercepts are $\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$; the y-intercept is 1 .
6. The maximum value is 1 and occurs at $x=\ldots,-2 \pi, 0,2 \pi, 4 \pi, 6 \pi, \ldots$; the minimum value is -1 and occurs at $x=\ldots,-\pi, \pi, 3 \pi, 5 \pi, \ldots$.

2 Graph Functions of the Form $y=A \cos (\omega x)$ Using Transformations

EXAMPLE

Graphing Functions of the Form $y=A \cos (\omega x)$ Using Transformations

Graph $y=2 \cos (3 x)$ using transformations.

Replace x by 3x; Horizontal
compression by a factor of $\frac{1}{3}$

Sinusoidal Graphs

(a) $y=\cos x \quad y=\cos \left(x-\frac{\pi}{2}\right)$

(b) $y=\sin x$

$$
\sin x=\cos \left(x-\frac{\pi}{2}\right)
$$

- Seeing the Concept

Graph $Y_{1}=\sin x$ and $Y_{2}=\cos \left(x-\frac{\pi}{2}\right)$.
How many graphs do you see?

```Floti Flote Flots Y1日 Bi CO Ye \(\operatorname{cose}(x-\pi / 2)\) V3= \(\because 4=\) \(\mathrm{Y}=\) \(\mathrm{Y}_{6}=\) \(W_{7}=\)```



## 3 Determine the Amplitude and Period of Sinusoidal Functions



$$
y=\cos x
$$

Multiply by 2;
Vertical stretch by a factor of 2


$$
y=2 \cos x
$$

## Amplitude




$$
y=\cos x
$$

Replace $x$ by $3 x$;
Horizontal compression by a factor of $\frac{1}{3}$


$$
y=\cos (3 x)
$$



## THEOREM

If $\omega>0$, the amplitude and period of
$y=A \sin (\omega x)$ and $y=A \cos (\omega x)$ are
Amplitude $=|A| \quad$ Period $=T=\frac{2 \pi}{\omega}$

## EXAMPLE

## Finding the Amplitude and Period of a Sinusoidal Function

Determine the amplitude and period of $y=-4 \cos (3 x)$

$$
\begin{aligned}
& \text { Amplitude }=|-4|=4 \\
& \text { Period }=T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}
\end{aligned}
$$

[^0]Amplitude $=|A| \quad$ Period $=T=\frac{2 \pi}{\omega}$

## 4 Graph Sinusoidal Functions Using Key Points

$$
\left[0, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \pi\right],\left[\pi, \frac{3 \pi}{2}\right],\left[\frac{3 \pi}{2}, 2 \pi\right]
$$



(a) $y=\sin x$
(b) $y=\cos x$

For $y=\sin x: \quad(0,0),\left(\frac{\pi}{2}, 1\right),(\pi, 0),\left(\frac{3 \pi}{2},-1\right),(2 \pi, 0)$
For $y=\cos x: \quad(0,1),\left(\frac{\pi}{2}, 0\right),(\pi,-1),\left(\frac{3 \pi}{2}, 0\right),(2 \pi, 1)$

## EXAMPLE How to Graph a Sinusoidal Function Using Key Points

Graph $y=4 \cos (2 x)$ using key points.
Step 1: Determine the amplitude and period of the sinusoidal function.

Amplitude $=|4|=4 \quad$ Period $=T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi$
Step 2: Divide the interval $\left[0, \frac{2 \pi}{\omega}\right] \quad \pi \div 4=\frac{\pi}{4}$
into four subintervals of the same length.

$$
\left[0, \frac{\pi}{4}\right],\left[\frac{\pi}{4}, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right],\left[\frac{3 \pi}{4}, \pi\right]
$$

Step 3: Use the endpoints of these subintervals to obtain five key points on the graph.

$$
(0,4),\left(\frac{\pi}{4}, 0\right),\left(\frac{\pi}{2},-4\right),\left(\frac{3 \pi}{4}, 0\right),(\pi, 4)
$$

## EXAMPLE How to Graph a Sinusoidal Function Using Key Points

Graph $y=4 \cos (2 x)$ using key points.
Step 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.


$(0,4),\left(\frac{\pi}{4}, 0\right),\left(\frac{\pi}{2},-4\right),\left(\frac{3 \pi}{4}, 0\right),(\pi, 4)$

# SUMMARY Steps for Graphing a Sinusoidal Function of the Form $y=A \sin (\omega x)$ or $y=A \cos (\omega x)$ Using Key Points 

STEP 1: Determine the amplitude and period of the sinusoidal function.

STEP 2: Divide the interval $\left[0, \frac{2 \pi}{\omega}\right]$ into four subintervals of the same length.

STEP 3: Use the endpoints of these subintervals to obtain five key points on the graph.

STEP 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.

## EXAMPLE

Graph $y=-3 \cos \left(\frac{\pi}{4} x\right)$ using key points.

$$
\text { Period }=T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\frac{\pi}{4}}=8 \quad 8 \div 4=2
$$

$$
[0,2],[2,4],[4,6],[6,8]
$$

$$
(0,-3),(2,0),(4,3),(6,0),(8,-3)
$$



## EXAMPLE

Graphing a Sinusoidal Function Using Key Points
Graph $y=5 \sin (3 x)$ using key points.
Amplitude $=|5|=5 \quad$ Period $=T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3} \quad \frac{2 \pi}{3} \div 4=\frac{\pi}{6}$

$$
\left[0, \frac{\pi}{6}\right],\left[\frac{\pi}{6}, \frac{\pi}{3}\right],\left[\frac{\pi}{3}, \frac{\pi}{2}\right],\left[\frac{\pi}{2}, \frac{2 \pi}{3}\right] \quad(0,0),\left(\frac{\pi}{6}, 5\right),\left(\frac{\pi}{3}, 0\right),\left(\frac{\pi}{2},-5\right),\left(\frac{2 \pi}{3}, 0\right)
$$



## 5 Find an Equation for a Sinusoidal Graph

Find an equation for the graph shown


## Find an equation for the graph shown

Note that this is a reflection over the $x$-axis of the sine function so

$$
y=A \sin (\omega x)
$$



$$
y=A \sin (\omega x)=-2 \sin \left(\frac{\pi}{2} x\right)
$$


[^0]:    If $\omega>0$, the amplitude and period of
    $y=A \sin (\omega x)$ and $y=A \cos (\omega x)$ are

