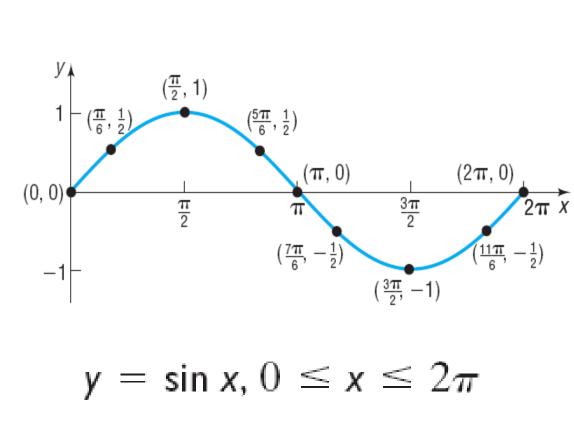
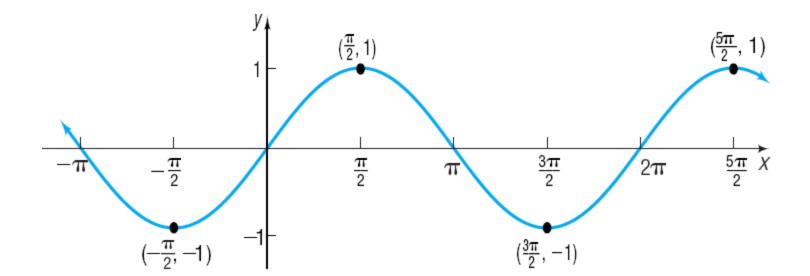
Section 7.6 Graphs of the Sine and Cosine Functions

$$y = f(x) = \sin x$$
 $y = f(x) = \cos x$ $y = f(x) = \tan x$
 $y = f(x) = \csc x$ $y = f(x) = \sec x$ $y = f(x) = \cot x$

The Graph of the Sine Function $y = \sin x$

x	$y = \sin x$	(<i>x</i> , <i>y</i>)	
0	0	(0, 0)	
$\frac{\pi}{6}$	$\frac{1}{2}$	$\left(\frac{\pi}{6},\frac{1}{2}\right)$	
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2},1\right)$	
$\frac{5\pi}{6}$	$\frac{1}{2}$	$\left(\frac{5\pi}{6},\frac{1}{2}\right)$	
π	0	(<i>π</i> , 0)	
$\frac{7\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7\pi}{6},-\frac{1}{2}\right)$	
$\frac{3\pi}{2}$	-1	$\left(\frac{3\pi}{2},-1\right)$	
$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11\pi}{6},-\frac{1}{2}\right)$	
2π	0	(2 <i>π</i> , 0)	





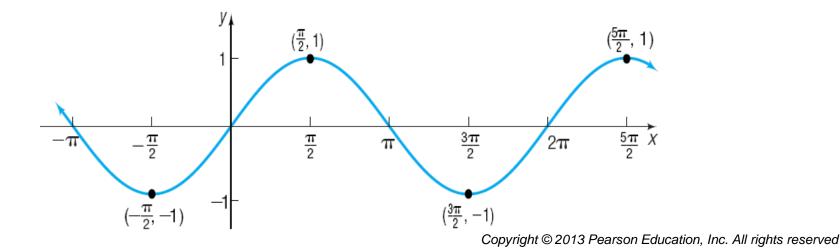
$$y = \sin x, -\infty < x < \infty$$

Properties of the Sine Function

- **1.** The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- 4. The sine function is periodic, with period 2π .
- 5. The x-intercepts are $\ldots, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \ldots$; the y-intercept is 0.

6. The maximum value is 1 and occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots;$

the minimum value is -1 and occurs at
$$x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$$

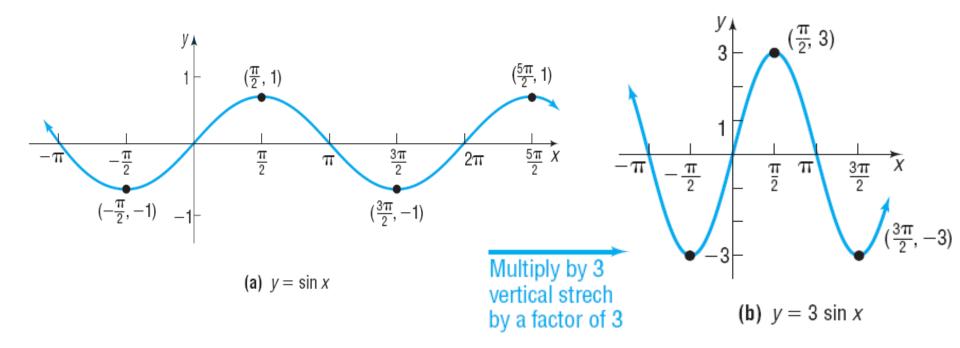


1 Graph Functions of the Form $y = A \sin(\omega x)$ Using Transformations

EXAMPLE

Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

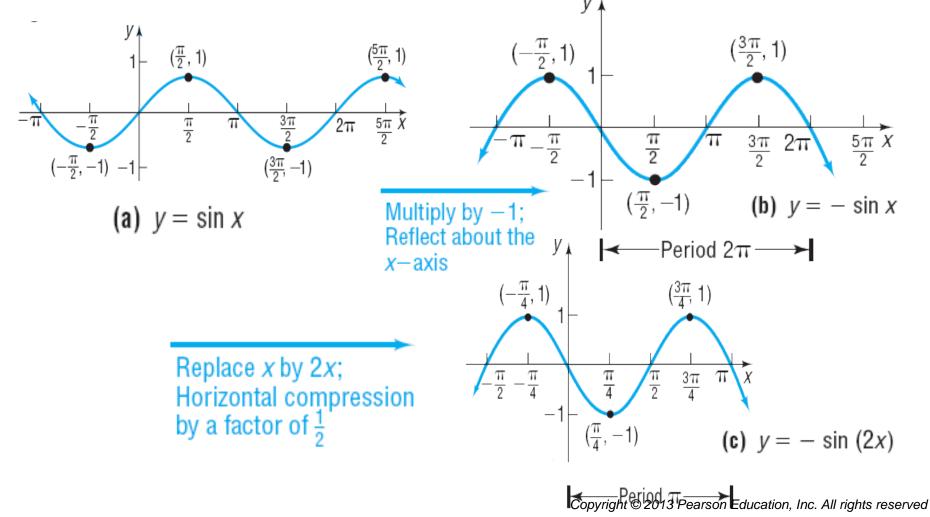
Graph $y = 3 \sin x$ using transformations.



EXAMPLE

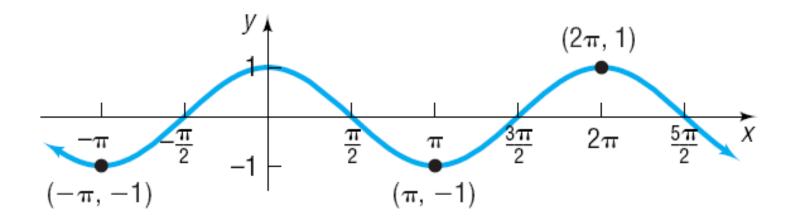
Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graph $y = -\sin(2x)$ using transformations.



The Graph of the Cosine Function

x	$y = \cos x$	(<i>x</i> , <i>y</i>)	
0	1	(0, 1)	У.
$\frac{\pi}{3}$	$\frac{1}{2}$	$\left(\frac{\pi}{3},\frac{1}{2}\right)$	$1 \qquad (0, 1) \qquad (2\pi, 1) \\ (\frac{\pi}{3}, \frac{1}{2}) \qquad (\frac{5\pi}{3}, \frac{1}{2}) \qquad (2\pi, 1)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$	
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2\pi}{3},-\frac{1}{2}\right)$	$\begin{pmatrix} 2 \\ (\frac{2\pi}{3}, -\frac{1}{2}) \\ (\frac{4\pi}{3}, -\frac{1}{2}) \end{pmatrix}$
π	-1	$(\pi, -1)$	$ \begin{vmatrix} -1 \\ y = \cos x, 0 \le x \le 2\pi $
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4\pi}{3},-\frac{1}{2}\right)$	
$\frac{3\pi}{2}$	0	$\left(\frac{3\pi}{2},0\right)$	
$\frac{5\pi}{3}$	<u>1</u> 2	$\left(\frac{5\pi}{3},\frac{1}{2}\right)$	
2π	1	(2 π , 1)	



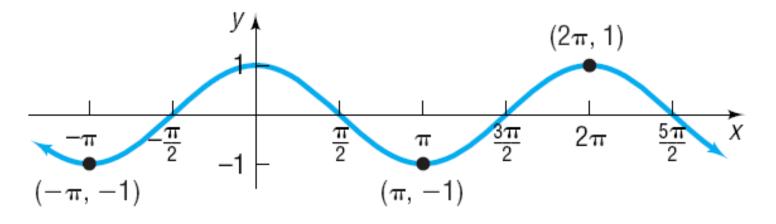
 $y = \cos x, -\infty < x < \infty$

Properties of the Cosine Function

- 1. The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The cosine function is an even function, as the symmetry of the graph with respect to the *y*-axis indicates.
- 4. The cosine function is periodic, with period 2π .

5. The x-intercepts are $\ldots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots$; the y-intercept is 1.

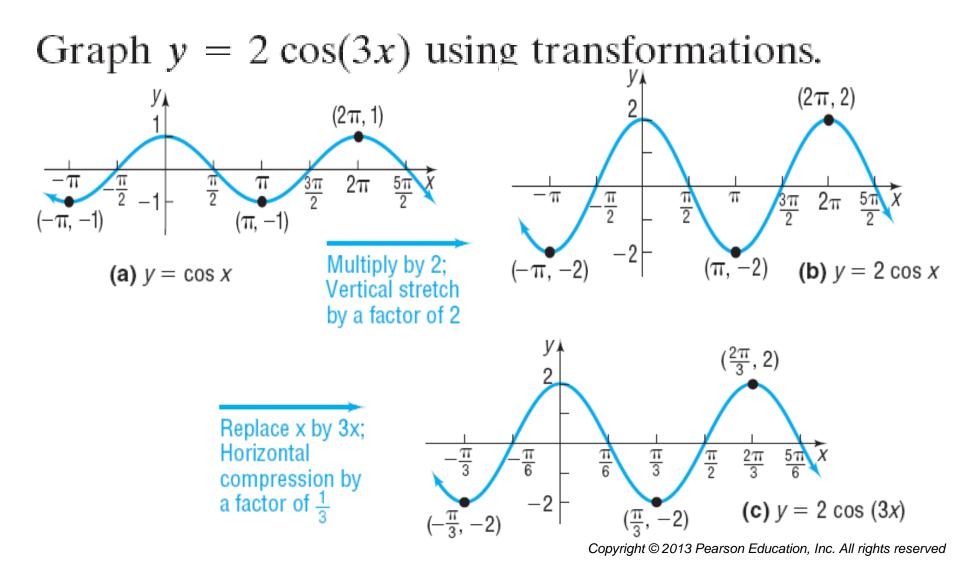
6. The maximum value is 1 and occurs at $x = \ldots, -2\pi, 0, 2\pi, 4\pi, 6\pi, \ldots$; the minimum value is -1 and occurs at $x = \ldots, -\pi, \pi, 3\pi, 5\pi, \ldots$



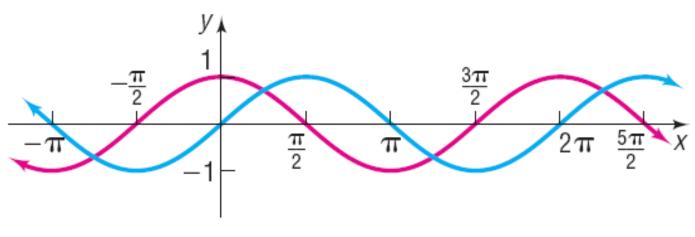
2 Graph Functions of the Form $y = A \cos(\omega x)$ Using Transformations

EXAMPLE

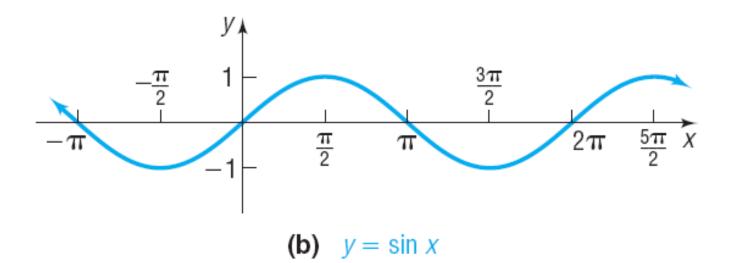
Graphing Functions of the Form $y = A \cos(\omega x)$ Using Transformations



Sinusoidal Graphs

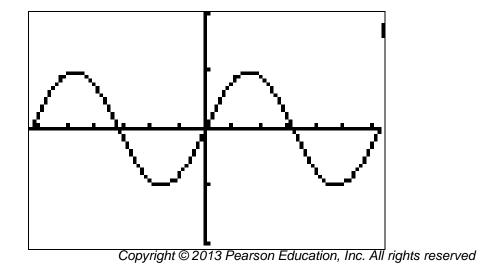


(a) $y = \cos x$ $y = \cos (x - \frac{\pi}{2})$

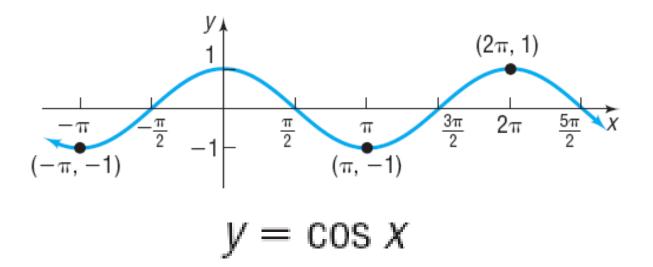


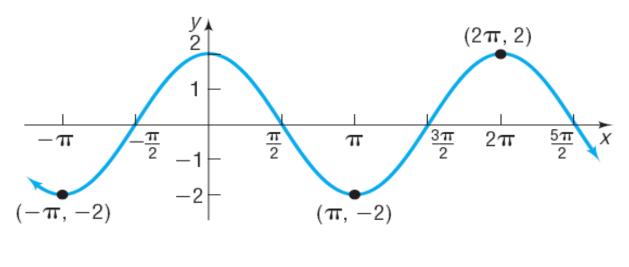
$$\sin x = \cos\left(x - \frac{\pi}{2}\right)$$

— Seeing the Concept —
Graph
$$Y_1 = \sin x$$
 and $Y_2 = \cos\left(x - \frac{\pi}{2}\right)$.
How many graphs do you see?



3 Determine the Amplitude and Period of Sinusoidal Functions

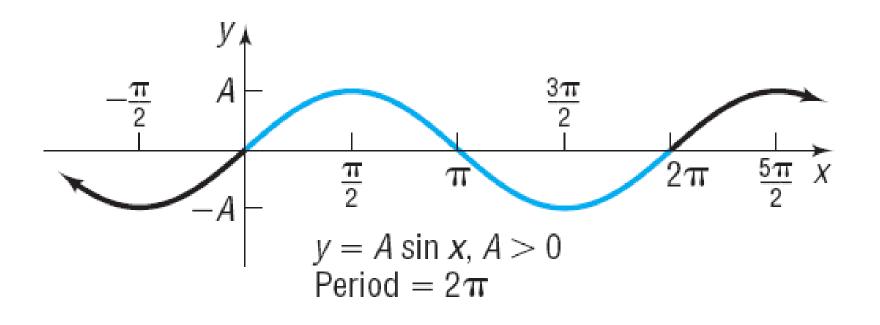


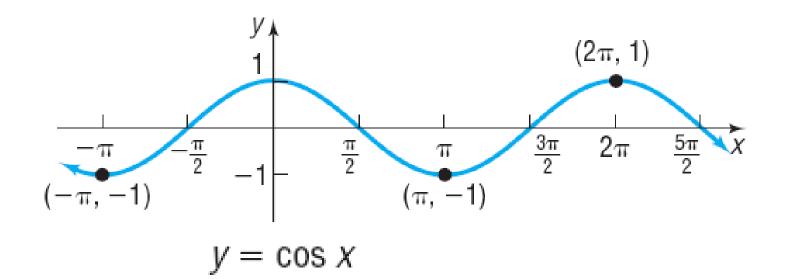


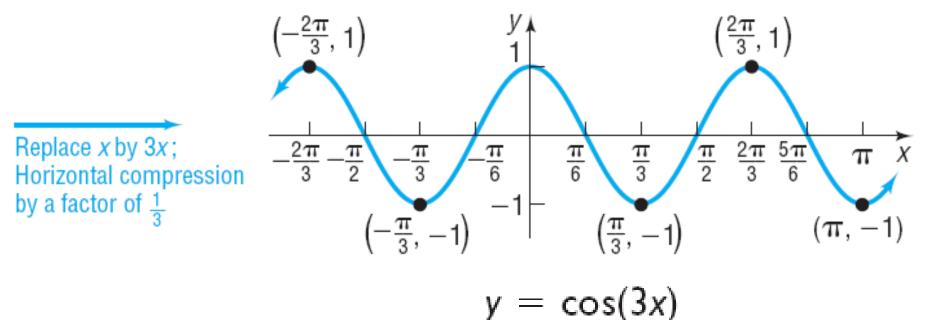
 $y = 2 \cos x$

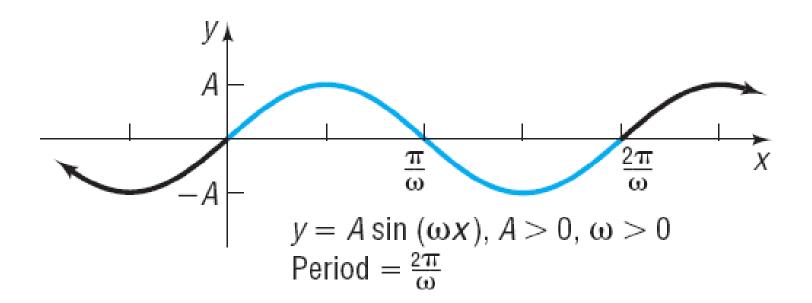
Multiply by 2; Vertical stretch by a factor of 2

Amplitude









THEOREM

If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are Amplitude = |A| Period = $T = \frac{2\pi}{\omega}$

Copyright © 2013 Pearson Education, Inc. All rights reserved

Finding the Amplitude and Period of a Sinusoidal Function

Determine the amplitude and period of $y = -4 \cos(3x)$

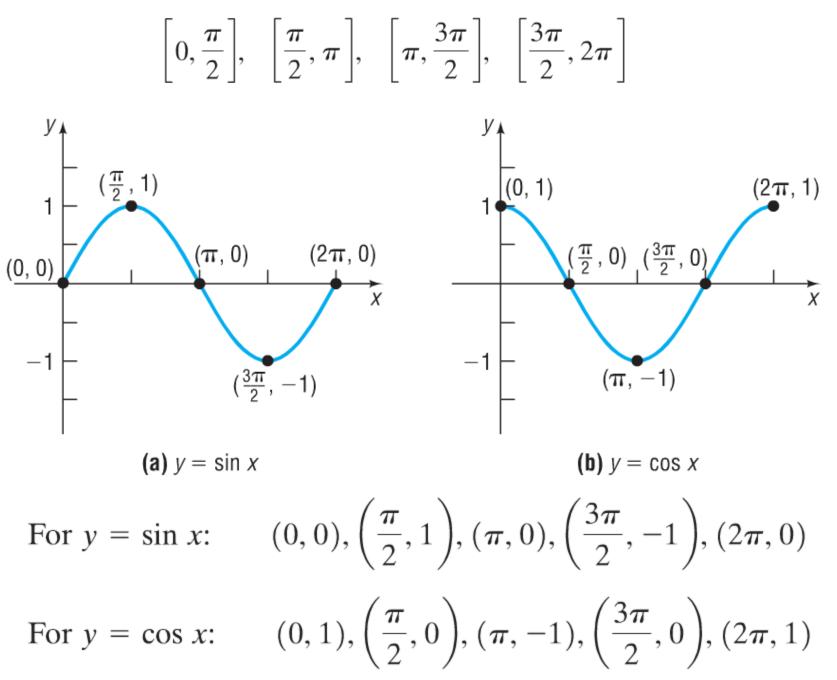
Amplitude =
$$\left|-4\right| = 4$$

 2π 2π

Period =
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{3}$$

If
$$\omega > 0$$
, the amplitude and period of
 $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are
Amplitude = $|A|$ Period = $T = \frac{2\pi}{\omega}$

4 Graph Sinusoidal Functions Using Key Points



Copyright © 2013 Pearson Education, Inc. All rights reserved

EXAMPLE

How to Graph a Sinusoidal Function Using Key Points

Graph $y = 4\cos(2x)$ using key points.

Step 1: Determine the amplitude and period of the sinusoidal function.

Amplitude = |4| = 4Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$ Step 2: Divide the interval $\begin{bmatrix} 0, \frac{2\pi}{\omega} \end{bmatrix}$ $\pi \div 4 = \frac{\pi}{4}$ into four subintervals of the same
length. $\begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}, \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}, \begin{bmatrix} \frac{\pi}{2}, \frac{3\pi}{4} \end{bmatrix}, \begin{bmatrix} \frac{3\pi}{4}, \pi \end{bmatrix}$

Step 3: Use the endpoints of these subintervals to obtain five key points on the graph.

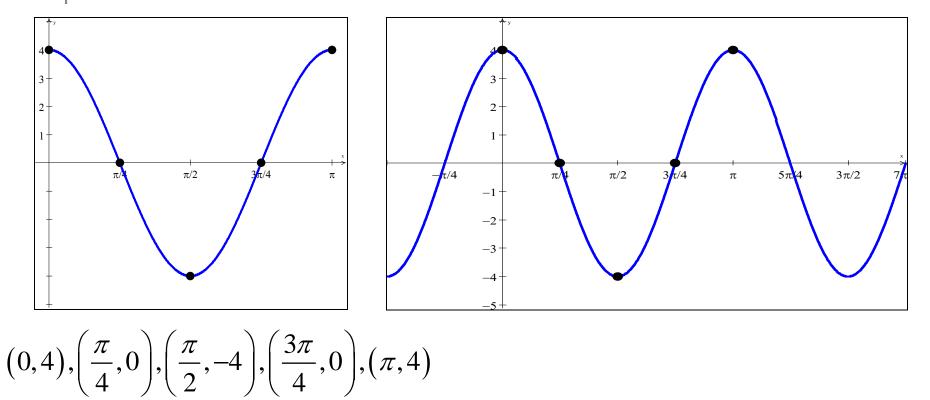
$$(0,4), \left(\frac{\pi}{4}, 0\right), \left(\frac{\pi}{2}, -4\right), \left(\frac{3\pi}{4}, 0\right), (\pi, 4)$$

EXAMPLE

How to Graph a Sinusoidal Function Using Key Points

Graph $y = 4\cos(2x)$ using key points.

Step 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.



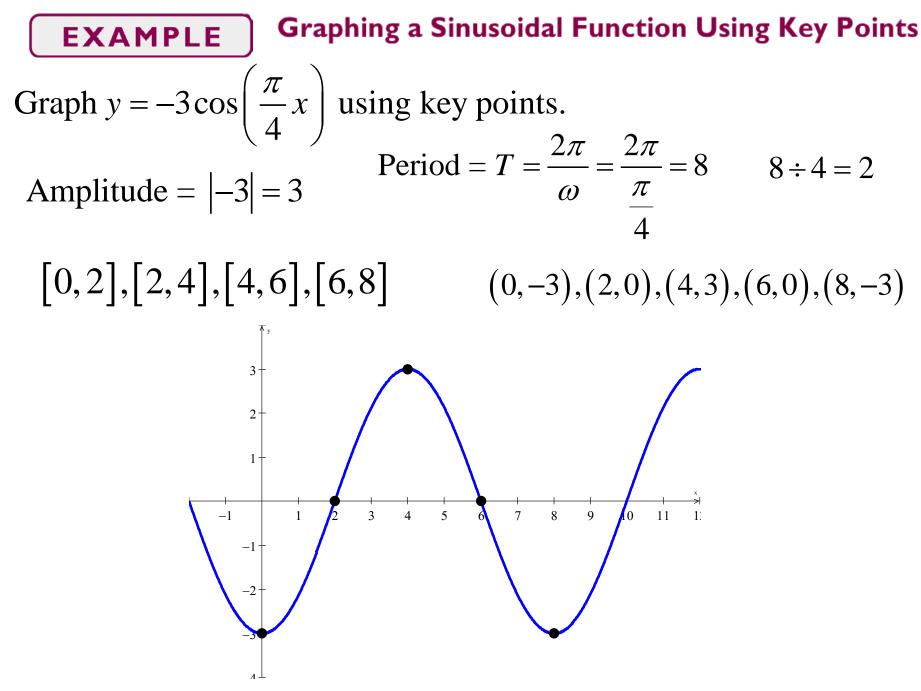
SUMMARY Steps for Graphing a Sinusoidal Function of the Form $y = A \sin(\omega x)$ or $y = A \cos(\omega x)$ Using Key Points

STEP 1: Determine the amplitude and period of the sinusoidal function.

STEP 2: Divide the interval
$$\left[0, \frac{2\pi}{\omega}\right]$$
 into four subintervals of the same length.

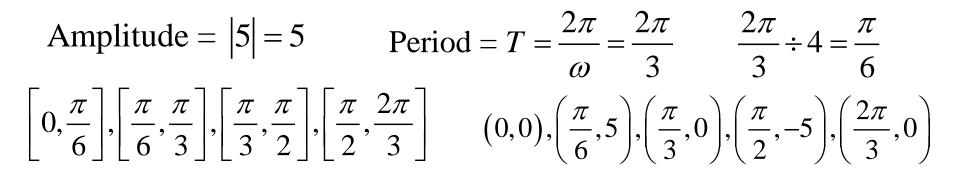
STEP 3: Use the endpoints of these subintervals to obtain five key points on the graph.

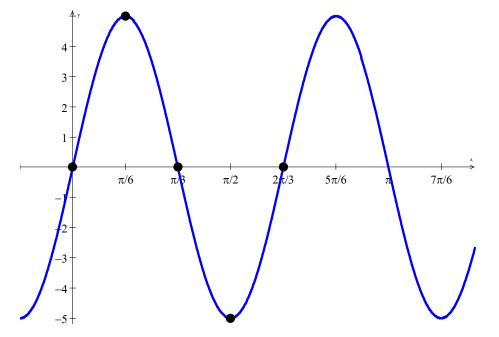
STEP 4: Plot the five key points and draw a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.



EXAMPLE Graphing a Sinusoidal Function Using Key Points

Graph $y = 5\sin(3x)$ using key points.



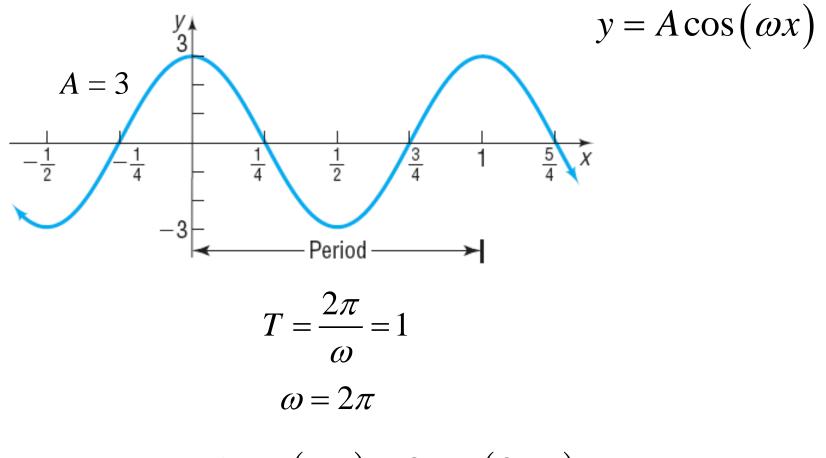


Copyright © 2013 Pearson Education, Inc. All rights reserved

5 Find an Equation for a Sinusoidal Graph

EXAMPLE Finding an Equation for a Sinusoidal Graph

Find an equation for the graph shown



 $y = A\cos(\omega x) = 3\cos(2\pi x)$

Finding an Equation for a Sinusoidal Graph

Find an equation for the graph shown

EXAMPLE

