Read all directions carefully and write your answers in the space provided. To receive full credit, you must show all of your work.

Question 0: (30pts):P17 page 488. Multiple Choice: Which of the following are improper integrals? You may select more than one choice.

- 1. $\int_{1}^{2} \frac{1}{2x-1} dx$
- 2. $\int_0^1 \frac{1}{2x-1} dx$
- 3. $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx$
- 4. $\int_{1}^{2} \ln(x-1) dx$
- 5. $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$
- 6. $\int_{-\infty}^{0} \frac{1}{x^2+5} dx$

Question 1: (30pts):P17 page 488. Describe the solid whose volume is given by the integral.

1.
$$\int_0^{\pi/2} 2\pi \cos^2 x dx$$

2.
$$\int_0^1 \pi \left[\left(2 - x^2 \right)^2 - (2 - \sqrt{x})^2 \right] dx$$

Question 2: (30pts): problem 27 page 489. A force of 30 N is required to maintain a spring stretched from its natural length of 12 m to a length of 15 m. How much work is done in stretching the spring from 12 m to 20 m ?

Question 3: (30pts): problem 28 page 489. A 1600 -lb elevator is suspended by a 200 -ft cable that weighs 10lb/ft. How much work is required to raise the elevator from the basement to the third floor, a distance of 30ft ?

Question 4: (30pts): problem 19 page 489. The base of a solid is a circular disk with radius 3. Find the volume of the solid if parallel cross-sections perpendicular to the base are isosceles right triangles with hypotenuse lying along the base.

Question 5: (30pts): problem 17 page 459. Use Left Riemann sums with n = 5 to estimate the arc length of the curve. And explain if its overestimate or underestimate. $y = e^x$, $0 \le x \le 10$

Question 6: (30pts): If f is continuous and $\int_1^3 f(x)dx = 8$, show that f takes on the value 4 at least once on the interval [1,3].

Question A. tank is full of water. Find the work required to pump the water out of the spout. (density of water is $1000 \frac{kg}{m^3}$

frustum of a cone