\qquad

Read all directions carefully and write your answers in the space provided. To receive full credit, you must show all of your work.

Question 1: (40pts). use appropriate tests to determine the convergence or divergence of the following series. Throughout, if a series is a convergent geometric series, find its sum.

1. $\sum_{k=3}^{\infty} \frac{3}{\sqrt{k+1}}$
2. $\sum_{k=0}^{\infty} \frac{e^{k}}{k!!}$
3. $\sum_{k=0}^{\infty} \frac{2 k^{2021}+1}{k^{2022}+k+1}$
4. $\sum_{k=2}^{\infty} \frac{1}{k(\ln (k))^{2}}$

Question 2: (30pts). Answer only one (second one counted as a bonus)

1. Find the partial sum S_{5} of the series $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ and estimate the error in using it as approximation to the sum of the series.
2. Determine a value of n so that the nth partial sum S_{n} of the alternating series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ approximates the sum to within 10^{-4}.

Question 3: (20pts). Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.

1. $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\}$
2. $\left\{-\frac{1}{4}, \frac{2}{9},-\frac{3}{16}, \frac{4}{25}, \ldots\right\}$

Question 4: (20pts). Determine whether the sequence converges or diverges. If it converges, find the limit. If it diverges write state it.

1. $a_{n}=\frac{1+n^{k}}{n+3 n^{k+1}}$ (Where k is positive integer)
2. $a_{n}=\cos \left(\frac{1}{n}\right)$

Question 5: (30pts). 1. Consider the following expression. Find the value of c.

$$
\sum_{n=2}^{\infty}(1+c)^{-n}=6
$$

2. Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}
$$

Question 6: (30pts). Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

1. $\sum_{n=0}^{\infty} \frac{(-12)^{n}}{n!}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$

Question 7: (15pts). Determine whether the Ratio Test is inconclusive (that is, it fails to give a definite answer), conclusive (convergent), or conclusive (divergent) for the given series.

$$
\sum_{n=2}^{\infty} \frac{3}{n^{3}}
$$

Question Bonus: (30pts). Show that if $\sum_{n=1}^{\infty} a_{n}$ absolutely converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.

Question 2: (30pts). Question 1: (30pts). 1. Suppose $\sum a_{n}=3$ and s_{n} is the nth partial sum of the series. What is $\lim _{n \rightarrow \infty} a_{n}$? What is $\lim _{n \rightarrow \infty} S_{n}$?
2. If $\sum c_{n} 6^{n}$ is convergent, then $\sum c_{n}(-2)^{n}$ is convergent.
3. If $\sum c_{n} 6^{n}$ is convergent, then $\sum c_{n}(-6)^{n}$ is convergent.
4. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n}+b_{n}\right\}$ is divergent.
5. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent, then $\left\{a_{n} b_{n}\right\}$ is divergent.

Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.

1. $a_{n}=\frac{2+n^{3}}{1+2 n^{3}}$
2. $a_{n}=\frac{9^{n+1}}{10^{n}}$
3.

Question 3: (30pts). 9-18 Determine whether the series is convergent or divergent.

1. $\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$
2. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$
3. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
4. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{3 n+1}\right)$

Question F. ind the sum of the series: $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{3 n}}$

