1. Consider the region bound by $y=\sqrt{x+1}, x=3, x=6$.
(a) Find an integral which computes the volume of the solid formed by rotating this region about the x-axis.
(b) Find an integral which computes the volume of the solid formed by rotating this region about the y-axis.
2. Find the volume of the described solid. The base of S is the region enclosed by the parabola $y=1-x^{2}$ and the x-axis. Cross-sections perpendicular to the y-axis are squares.

1 Answers

1. Answer:
(a) Using the washer/disk method, we obtain

$$
\int_{3}^{6} \pi(\sqrt{x+1})^{2} d x
$$

and using the shell method, we obtain

$$
\int_{0}^{2} 2 \pi y(6-3) d y+\int_{2}^{\sqrt{7}} 2 \pi y\left(6-\left(y^{2}-1\right)\right) d y
$$

(b) Using the washer/disk method, we obtain

$$
\int_{0}^{2} \pi\left(6^{2}-3^{2}\right) d y+\int_{2}^{\sqrt{7}} \pi\left(6^{2}-\left(y^{2}-1\right)^{2}\right) d y
$$

and using the shell method, we obtain

$$
\int_{3}^{6} 2 \pi x(\sqrt{x+1}) d x
$$

2. The cross-section of the base corresponding to the coordinate y has length $2 x=2 \sqrt{1-y} . \quad\left[y=1-x^{2} \quad \Leftrightarrow \quad x= \pm \sqrt{1-y}\right]$ The corresponding square with side s has area $A(x)=s^{2}=(2 \sqrt{1-y})^{2}=4(1-y)$. Therefore, $V=\int_{0}^{1} A(y) d y=\int_{0}^{1} 4(1-y) d y=4\left[y-\frac{1}{2} y^{2}\right]_{0}^{1}=4\left[\left(1-\frac{1}{2}\right)-0\right]=2$
